
TMS320C6000 Assembly Language Tools
v 7.3

User's Guide

Literature Number: SPRU186V

July 2011

2 SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Contents

Preface .. 11

1 Introduction to the Software Development Tools ... 15
1.1 Software Development Tools Overview .. 16
1.2 Tools Descriptions ... 17

2 Introduction to Object Modules ... 19
2.1 Sections ... 20
2.2 How the Assembler Handles Sections .. 21

2.2.1 Uninitialized Sections .. 21
2.2.2 Initialized Sections .. 22
2.2.3 Named Sections .. 23
2.2.4 Subsections ... 23
2.2.5 Section Program Counters .. 24
2.2.6 Using Sections Directives ... 24

2.3 How the Linker Handles Sections ... 27
2.3.1 Default Memory Allocation .. 27
2.3.2 Placing Sections in the Memory Map .. 28

2.4 Relocation .. 28
2.5 Run-Time Relocation .. 30
2.6 Loading a Program .. 30
2.7 Symbols in an Object File .. 31

2.7.1 External Symbols ... 31
2.8 Object File Format Specifications ... 32

3 Assembler Description ... 33
3.1 Assembler Overview .. 34
3.2 The Assembler's Role in the Software Development Flow .. 35
3.3 Invoking the Assembler ... 36
3.4 Controlling Application Binary Interface .. 37
3.5 Naming Alternate Directories for Assembler Input .. 37

3.5.1 Using the --include_path Assembler Option .. 38
3.5.2 Using the C6X_A_DIR Environment Variable .. 38

3.6 Source Statement Format .. 40
3.6.1 Label Field ... 41
3.6.2 Mnemonic Field ... 41
3.6.3 Unit Specifier Field ... 42
3.6.4 Operand Field ... 42
3.6.5 Comment Field .. 42

3.7 Constants ... 43
3.7.1 Binary Integers .. 43
3.7.2 Octal Integers ... 43
3.7.3 Decimal Integers .. 43
3.7.4 Hexadecimal Integers .. 44
3.7.5 Character Constants ... 44
3.7.6 Assembly-Time Constants .. 44

3.8 Character Strings .. 45
3.9 Symbols ... 45

3SPRU186V–July 2011 Contents
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com

3.9.1 Labels .. 45
3.9.2 Local Labels ... 45
3.9.3 Symbolic Constants .. 48
3.9.4 Defining Symbolic Constants (--asm_define Option) .. 48
3.9.5 Predefined Symbolic Constants .. 49
3.9.6 Register Pairs ... 51
3.9.7 Register Quads (C6600 Only) .. 52
3.9.8 Substitution Symbols ... 52

3.10 Expressions .. 53
3.10.1 Operators ... 53
3.10.2 Expression Overflow and Underflow .. 53
3.10.3 Well-Defined Expressions .. 54
3.10.4 Conditional Expressions .. 54
3.10.5 Legal Expressions ... 54
3.10.6 Expression Examples ... 55

3.11 Built-in Functions and Operators .. 56
3.11.1 Built-In Math and Trigonometric Functions ... 56
3.11.2 C6x Built-In Operators .. 57

3.12 Source Listings .. 61
3.13 Debugging Assembly Source .. 63
3.14 Cross-Reference Listings ... 64

4 Assembler Directives ... 65
4.1 Directives Summary ... 66
4.2 Directives That Define Sections ... 70
4.3 Directives That Initialize Constants ... 72
4.4 Directives That Perform Alignment and Reserve Space ... 73
4.5 Directives That Format the Output Listings .. 74
4.6 Directives That Reference Other Files .. 75
4.7 Directives That Enable Conditional Assembly ... 76
4.8 Directives That Define Union or Structure Types ... 76
4.9 Directives That Define Enumerated Types ... 77
4.10 Directives That Define Symbols at Assembly Time ... 77
4.11 Miscellaneous Directives ... 78
4.12 Directives Reference .. 79

5 Macro Description .. 143
5.1 Using Macros ... 144
5.2 Defining Macros .. 144
5.3 Macro Parameters/Substitution Symbols ... 146

5.3.1 Directives That Define Substitution Symbols .. 147
5.3.2 Built-In Substitution Symbol Functions ... 148
5.3.3 Recursive Substitution Symbols .. 149
5.3.4 Forced Substitution ... 149
5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols 150
5.3.6 Substitution Symbols as Local Variables in Macros .. 151

5.4 Macro Libraries ... 151
5.5 Using Conditional Assembly in Macros ... 152
5.6 Using Labels in Macros ... 154
5.7 Producing Messages in Macros .. 155
5.8 Using Directives to Format the Output Listing ... 156
5.9 Using Recursive and Nested Macros ... 157
5.10 Macro Directives Summary ... 159

6 Archiver Description .. 161

4 Contents SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com

6.1 Archiver Overview .. 162
6.2 The Archiver's Role in the Software Development Flow .. 163
6.3 Invoking the Archiver .. 164
6.4 Archiver Examples ... 165
6.5 Library Information Archiver Description .. 166

6.5.1 Invoking the Library Information Archiver .. 166
6.5.2 Library Information Archiver Example .. 167
6.5.3 Listing the Contents of an Index Library ... 167
6.5.4 Requirements .. 167

7 Linker Description ... 169
7.1 Linker Overview .. 170
7.2 The Linker's Role in the Software Development Flow .. 171
7.3 Invoking the Linker ... 172
7.4 Linker Options .. 173

7.4.1 Wild Cards in File, Section, and Symbol Patterns .. 176
7.4.2 Relocation Capabilities (--absolute_exe and --relocatable Options) 176
7.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option) 177
7.4.4 Compression (--cinit_compression and --copy_compression Option) 177
7.4.5 Control Linker Diagnostics ... 178
7.4.6 Disable Automatic Library Selection (--disable_auto_rts Option) ... 178
7.4.7 Controlling Unreferenced and Unused Sections .. 178
7.4.8 Link Command File Preprocessing (--disable_pp, --define and --undefine Options) 179
7.4.9 Define an Entry Point (--entry_point Option) .. 180
7.4.10 Set Default Fill Value (--fill_value Option) .. 180
7.4.11 Define Heap Size (--heap_size Option) ... 180
7.4.12 Hiding Symbols ... 181
7.4.13 Alter the Library Search Algorithm (--library Option, --search_path Option, and C6X_C_DIR

Environment Variable) .. 182
7.4.14 Change Symbol Localization ... 184
7.4.15 Create a Map File (--map_file Option) .. 185
7.4.16 Managing Map File Contents (--mapfile_contents Option) ... 186
7.4.17 Disable Name Demangling (--no_demangle) .. 188
7.4.18 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option) 188
7.4.19 Strip Symbolic Information (--no_sym_table Option) .. 189
7.4.20 Name an Output Module (--output_file Option) .. 189
7.4.21 Prioritizing Function Placement (--preferred_order Option) .. 189
7.4.22 C Language Options (--ram_model and --rom_model Options) ... 189
7.4.23 Retain Discarded Sections (--retain Option) .. 190
7.4.24 Create an Absolute Listing File (--run_abs Option) .. 190
7.4.25 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries) 190
7.4.26 Define Stack Size (--stack_size Option) .. 190
7.4.27 Enforce Strict Compatibility (--strict_compatibility Option) .. 191
7.4.28 Mapping of Symbols (--symbol_map Option) .. 191
7.4.29 Generate Far Call Trampolines (--trampolines Option) ... 191
7.4.30 Introduce an Unresolved Symbol (--undef_sym Option) .. 193
7.4.31 Display a Message When an Undefined Output Section Is Created (--warn_sections Option) 193
7.4.32 Generate XML Link Information File (--xml_link_info Option) .. 194
7.4.33 Zero Initialization (--zero_init Option) .. 194

7.5 Linker Command Files .. 195
7.5.1 Reserved Names in Linker Command Files ... 196
7.5.2 Constants in Linker Command Files ... 196
7.5.3 The MEMORY Directive .. 197
7.5.4 The SECTIONS Directive .. 199

5SPRU186V–July 2011 Contents
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com

7.5.5 Specifying a Section's Run-Time Address ... 214
7.5.6 Using UNION and GROUP Statements .. 216
7.5.7 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT) .. 220
7.5.8 Assigning Symbols at Link Time .. 221
7.5.9 Creating and Filling Holes ... 226

7.6 Object Libraries ... 229
7.7 Default Allocation Algorithm .. 230

7.7.1 How the Allocation Algorithm Creates Output Sections ... 230
7.7.2 Reducing Memory Fragmentation .. 231

7.8 Linker-Generated Copy Tables .. 231
7.8.1 A Current Boot-Loaded Application Development Process ... 231
7.8.2 An Alternative Approach ... 232
7.8.3 Overlay Management Example ... 233
7.8.4 Generating Copy Tables Automatically With the Linker ... 233
7.8.5 The table() Operator .. 234
7.8.6 Boot-Time Copy Tables .. 235
7.8.7 Using the table() Operator to Manage Object Components ... 235
7.8.8 Compression Support .. 236
7.8.9 Copy Table Contents ... 239
7.8.10 General Purpose Copy Routine .. 240
7.8.11 Linker-Generated Copy Table Sections and Symbols .. 241
7.8.12 Splitting Object Components and Overlay Management ... 242

7.9 Partial (Incremental) Linking .. 244
7.10 Linking C/C++ Code ... 245

7.10.1 Run-Time Initialization ... 245
7.10.2 Object Libraries and Run-Time Support .. 246
7.10.3 Setting the Size of the Stack and Heap Sections ... 246
7.10.4 Autoinitialization of Variables at Run Time ... 246
7.10.5 Initialization of Variables at Load Time .. 246
7.10.6 The --rom_model and --ram_model Linker Options ... 247

7.11 Linker Example ... 248
7.12 Dynamic Linking with the C6000 Code Generation Tools .. 251

7.12.1 Static vs Dynamic Linking .. 251
7.12.2 Embedded Application Binary Interface (EABI) Required .. 252
7.12.3 Bare-Metal Dynamic Linking Model ... 252
7.12.4 Building a Dynamic Executable .. 254
7.12.5 Building a Dynamic Library ... 255
7.12.6 Symbol Import/Export ... 257

8 Absolute Lister Description ... 261
8.1 Producing an Absolute Listing .. 262
8.2 Invoking the Absolute Lister .. 263
8.3 Absolute Lister Example .. 264

9 Cross-Reference Lister Description ... 267
9.1 Producing a Cross-Reference Listing ... 268
9.2 Invoking the Cross-Reference Lister .. 269
9.3 Cross-Reference Listing Example ... 270

10 Object File Utilities ... 271
10.1 Invoking the Object File Display Utility .. 272
10.2 Invoking the Disassembler .. 273
10.3 Invoking the Name Utility ... 273
10.4 Invoking the Strip Utility ... 274

11 Hex Conversion Utility Description .. 275

6 Contents SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com

11.1 The Hex Conversion Utility's Role in the Software Development Flow ... 276
11.2 Invoking the Hex Conversion Utility ... 277

11.2.1 Invoking the Hex Conversion Utility From the Command Line .. 277
11.2.2 Invoking the Hex Conversion Utility With a Command File .. 279

11.3 Understanding Memory Widths .. 280
11.3.1 Target Width .. 280
11.3.2 Specifying the Memory Width .. 281
11.3.3 Partitioning Data Into Output Files ... 282
11.3.4 Specifying Word Order for Output Words ... 284

11.4 The ROMS Directive ... 284
11.4.1 When to Use the ROMS Directive ... 285
11.4.2 An Example of the ROMS Directive ... 286

11.5 The SECTIONS Directive ... 288
11.6 The Load Image Format (--load_image Option) ... 289

11.6.1 Load Image Section Formation .. 289
11.6.2 Load Image Characteristics .. 289

11.7 Excluding a Specified Section .. 289
11.8 Assigning Output Filenames .. 290
11.9 Image Mode and the --fill Option ... 291

11.9.1 Generating a Memory Image ... 291
11.9.2 Specifying a Fill Value ... 291
11.9.3 Steps to Follow in Using Image Mode .. 291

11.10 Building a Table for an On-Chip Boot Loader ... 292
11.10.1 Description of the Boot Table ... 292
11.10.2 The Boot Table Format .. 292
11.10.3 How to Build the Boot Table .. 294
11.10.4 Using the C6000 Boot Loader .. 295

11.11 Controlling the ROM Device Address ... 297
11.12 Control Hex Conversion Utility Diagnostics .. 298
11.13 Description of the Object Formats ... 299

11.13.1 ASCII-Hex Object Format (--ascii Option) ... 299
11.13.2 Intel MCS-86 Object Format (--intel Option) .. 300
11.13.3 Motorola Exorciser Object Format (--motorola Option) .. 301
11.13.4 Extended Tektronix Object Format (--tektronix Option) ... 302
11.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option) 303
11.13.6 TI-TXT Hex Format (--ti_txt Option) .. 304

12 Sharing C/C++ Header Files With Assembly Source ... 305
12.1 Overview of the .cdecls Directive .. 306
12.2 Notes on C/C++ Conversions .. 306

12.2.1 Comments .. 306
12.2.2 Conditional Compilation (#if/#else/#ifdef/etc.) .. 307
12.2.3 Pragmas ... 307
12.2.4 The #error and #warning Directives ... 307
12.2.5 Predefined symbol _ _ASM_HEADER_ _ .. 307
12.2.6 Usage Within C/C++ asm() Statements .. 307
12.2.7 The #include Directive ... 307
12.2.8 Conversion of #define Macros ... 307
12.2.9 The #undef Directive .. 308
12.2.10 Enumerations ... 308
12.2.11 C Strings ... 308
12.2.12 C/C++ Built-In Functions .. 309
12.2.13 Structures and Unions ... 309
12.2.14 Function/Variable Prototypes ... 309

7SPRU186V–July 2011 Contents
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com

12.2.15 C Constant Suffixes .. 310
12.2.16 Basic C/C++ Types ... 310

12.3 Notes on C++ Specific Conversions ... 310
12.3.1 Name Mangling .. 310
12.3.2 Derived Classes .. 310
12.3.3 Templates ... 311
12.3.4 Virtual Functions ... 311

12.4 Special Assembler Support ... 311
12.4.1 Enumerations (.enum/.emember/.endenum) ... 311
12.4.2 The .define Directive ... 311
12.4.3 The .undefine/.unasg Directives ... 311
12.4.4 The $defined() Built-In Function ... 312
12.4.5 The $sizeof Built-In Function ... 312
12.4.6 Structure/Union Alignment & $alignof() .. 312
12.4.7 The .cstring Directive .. 312

A Symbolic Debugging Directives ... 313
A.1 DWARF Debugging Format .. 314
A.2 COFF Debugging Format ... 314
A.3 Debug Directive Syntax ... 315

B XML Link Information File Description .. 317
B.1 XML Information File Element Types .. 318
B.2 Document Elements ... 318

B.2.1 Header Elements .. 318
B.2.2 Input File List .. 319
B.2.3 Object Component List ... 320
B.2.4 Logical Group List ... 321
B.2.5 Placement Map .. 323
B.2.6 Far Call Trampoline List .. 324
B.2.7 Symbol Table .. 325

C Glossary ... 327

8 Contents SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com

List of Figures

1-1. TMS320C6000 Software Development Flow ... 16

2-1. Partitioning Memory Into Logical Blocks ... 20

2-2. Using Sections Directives Example ... 25

2-3. Object Code Generated by the File in ... 26

2-4. Combining Input Sections to Form an Executable Object Module.. 27

3-1. The Assembler in the TMS320C6000 Software Development Flow.. 35

3-2. Example Assembler Listing .. 62

4-1. The .field Directive .. 72

4-2. Initialization Directives .. 73

4-3. The .align Directive.. 73

4-4. The .space and .bes Directives.. 74

4-5. Double-Precision Floating-Point Format.. 97

4-6. The .field Directive ... 104

4-7. Single-Precision Floating-Point Format ... 105

4-8. The .usect Directive ... 141

6-1. The Archiver in the TMS320C6000 Software Development Flow ... 163

7-1. The Linker in the TMS320C6000 Software Development Flow.. 171

7-2. Section Allocation Defined by ... 201

7-3. Run-Time Execution of ... 216

7-4. Memory Allocation Shown in and ... 217

7-5. Compressed Copy Table.. 236

7-6. Handler Table .. 237

7-7. Autoinitialization at Run Time .. 246

7-8. Initialization at Load Time... 247

7-9. A Basic DSP Run-Time Model ... 252

7-10. Dynamic Linking Model ... 253

7-11. Base Image Executable ... 254

8-1. Absolute Lister Development Flow .. 262

9-1. The Cross-Reference Lister Development Flow ... 268

11-1. The Hex Conversion Utility in the TMS320C6000 Software Development Flow 276

11-2. Hex Conversion Utility Process Flow.. 280

11-3. Object File Data and Memory Widths ... 281

11-4. Data, Memory, and ROM Widths .. 283

11-5. The infile.out File Partitioned Into Four Output Files .. 286

11-6. ASCII-Hex Object Format... 299

11-7. Intel Hexadecimal Object Format .. 300

11-8. Motorola-S Format ... 301

11-9. Extended Tektronix Object Format .. 302

11-10. TI-Tagged Object Format ... 303

11-11. TI-TXT Object Format ... 304

9SPRU186V–July 2011 List of Figures
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com

List of Tables

3-1. TMS320C6000 Assembler Options ... 36

3-2. CPU Control Registers.. 49

3-3. Processor Symbols.. 50

3-4. Operators Used in Expressions (Precedence) .. 53

3-5. Built-In Mathematical Functions ... 56

3-6. Symbol Attributes.. 64

4-1. Directives That Define Sections ... 66

4-2. Directives That Initialize Values (Data and Memory) ... 66

4-3. Directives That Perform Alignment and Reserve Space ... 67

4-4. Directives That Format the Output Listing ... 67

4-5. Directives That Reference Other Files.. 67

4-6. Directives That Effect Symbol Linkage and Visibility ... 68

4-7. Directives That Control Dynamic Symbol Visibility.. 68

4-8. Directives That Enable Conditional Assembly ... 68

4-9. Directives That Define Union or Structure Types ... 68

4-10. Directives That Define Symbols ... 69

4-11. Directives That Define Common Data Sections ... 69

4-12. Directives That Create or Effect Macros ... 69

4-13. Directives That Control Diagnostics... 69

4-14. Directives That Perform Assembly Source Debug .. 69

4-15. Directives That Are Used by the Absolute Lister .. 70

4-16. Directives That Perform Miscellaneous Functions .. 70

5-1. Substitution Symbol Functions and Return Values.. 148

5-2. Creating Macros.. 159

5-3. Manipulating Substitution Symbols .. 159

5-4. Conditional Assembly ... 159

5-5. Producing Assembly-Time Messages... 159

5-6. Formatting the Listing ... 159

7-1. Basic Options Summary .. 173

7-2. Command File Preprocessing Options Summary ... 173

7-3. Diagnostic Options Summary .. 173

7-4. File Search Path Options Summary ... 173

7-5. Linker Output Options Summary... 174

7-6. Symbol Management Options Summary ... 174

7-7. Run-Time Environment Options Summary ... 174

7-8. Link-Time Optimization Options Summary ... 175

7-9. Dynamic Linking Options Summary ... 175

7-10. Miscellaneous Options Summary .. 175

7-11. Groups of Operators Used in Expressions (Precedence) .. 222

7-12. Compiler Options For Dynamic Linking ... 256

7-13. Linker Options For Dynamic Linking .. 257

9-1. Symbol Attributes in Cross-Reference Listing.. 270

11-1. Basic Hex Conversion Utility Options ... 277

11-2. Boot-Loader Options... 294

11-3. Options for Specifying Hex Conversion Formats .. 299

A-1. Symbolic Debugging Directives .. 315

10 List of Tables SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Preface
SPRU186V–July 2011

Read This First

About This Manual

The TMS320C6000 Assembly Language Tools User's Guide explains how to use these assembly
language tools:

• Assembler

• Archiver

• Linker

• Library information archiver

• Absolute lister

• Cross-reference lister

• Disassembler

• Object file display utility

• Name utility

• Strip utility

• Hex conversion utility

How to Use This Manual

This book helps you learn how to use the Texas Instruments assembly language tools designed
specifically for the TMS320C6000 ™ 32-bit devices. This book consists of four parts:

• Introductory information, consisting of Chapter 1 and Chapter 2, gives you an overview of the
assembly language development tools. It also discusses object modules, which helps you to use the
TMS320C6000 tools more effectively. Read Chapter 2 before using the assembler and linker.

• Assembler description, consisting of Chapter 3 through Chapter 5, contains detailed information
about using the assembler. This portion explains how to invoke the assembler and discusses source
statement format, valid constants and expressions, assembler output, and assembler directives. It also
describes the macro language.

• Additional assembly language tools description, consisting of Chapter 6 through Chapter 11,
describes in detail each of the tools provided with the assembler to help you create executable object
files. For example, Chapter 7 explains how to invoke the linker, how the linker operates, and how to
use linker directives; Chapter 11 explains how to use the hex conversion utility.

• Reference material, consisting of Appendix A through Appendix C, provides supplementary
information including symbolic debugging directives that the TMS320C6000 C/C++ compiler uses. It
also provides a description of the XML link information file and a glossary.

11SPRU186V–July 2011 Read This First
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Notational Conventions www.ti.com

Notational Conventions

This document uses the following conventions:
• Program listings, program examples, and interactive displays are shown in a special typeface.

Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:
#include <stdio.h>
main()
{ printf("hello, cruel world\n");
}

• In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

cl6x [options] [filenames] [--run_linker [link_options] [object files]]

• Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_model or --ram_model option:

cl6x --run_linker {--rom_model | --ram_model} filenames [--output_file= name.out]

--library= libraryname

• In assembler syntax statements, column 1 is reserved for the first character of a label or symbol. If the
label or symbol is optional, it is usually not shown. If it is a required parameter, it is shown starting
against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in column 1.

symbol .usect "section name", size in bytes[, alignment]

• Some directives can have a varying number of parameters. For example, the .byte directive can have
multiple parameters. This syntax is shown as [, ..., parameter].

• The TMS320C6200 core is referred to as C6200. The TMS320C6400 core is referred to as C6400.
The TMS320C6700 core is referred to as C6700. TMS320C6000 and C6000 can refer to either C6200,
C6400, C6400+, C6700, C6700+, C6740, or C6600.

• Following are other symbols and abbreviations used throughout this document:

Symbol Definition

B,b Suffix — binary integer

H, h Suffix — hexadecimal integer

LSB Least significant bit

MSB Most significant bit

0x Prefix — hexadecimal integer

Q, q Suffix — octal integer

12 Read This First SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

You can use the following books to supplement this user's guide:

SPRAAO8 — Common Object File Format Application Report. Provides supplementary information on
the internal format of COFF object files. Much of this information pertains to the symbolic
debugging information that is produced by the C compiler.

SPRAB89— The C6000 Embedded Application Binary Interface Application Note. Provides a
specification for the ELF-based Embedded Application Binary Interface (EABI) for the C6000 family
of processors from Texas Instruments. The EABI defines the low-level interface between programs,
program components, and the execution environment, including the operating system if one is
present.

SPRU187 —TMS320C6000 Optimizing Compiler v 7.3 User's Guide. Describes the TMS320C6000 C
compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and
produces assembly language source code for the TMS320C6000 platform of devices (including the
C64x+ and C67x+ generations). The assembly optimizer helps you optimize your assembly code.

SPRU190 —TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000 family of digital signal processors
(DSPs).

SPRU198 —TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000 digital
signal processors (DSPs). Before you use this manual, you should install your code generation and
debugging tools. Includes a brief description of the C6000 DSP architecture and code development
flow, includes C code examples and discusses optimization methods for the C code, describes the
structure of assembly code and includes examples and discusses optimizations for the assembly
code, and describes programming considerations for the C64x DSP.

SPRU731 —TMS320C62x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C62x digital signal processors
(DSPs) of the TMS320C6000 DSP family. The C62x DSP generation comprises fixed-point devices
in the C6000 DSP platform.

SPRU732 —TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

SPRU733 —TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C67x and TMS320C67x+ digital
signal processors (DSPs) of the TMS320C6000 DSP platform. The C67x/C67x+ DSP generation
comprises floating-point devices in the C6000 DSP platform. The C67x+ DSP is an enhancement of
the C67x DSP with added functionality and an expanded instruction set.

SPRUGH7 —TMS320C66x CPU and Instruction Set Reference Guide Describes the CPU architecture,
pipeline, instruction set, and interrupts for the TMS320C66x digital signal processors (DSPs) of the
TMS320C6000 DSP platform. The C66x DSP generation comprises floating-point devices in the
C6000 DSP platform.

TMS320C6000 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

13SPRU186V–July 2011 Read This First
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spraaO8
http://www.ti.com/lit/pdf/sprab89
http://www.ti.com/lit/pdf/spru187
http://www.ti.com/lit/pdf/spru190
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/spru731
http://www.ti.com/lit/pdf/spru732
http://www.ti.com/lit/pdf/spru733
http://www.ti.com/lit/pdf/sprugh7
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

14 Read This First SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 1
SPRU186V–July 2011

Introduction to the Software Development Tools

The TMS320C6000™ is supported by a set of software development tools, which includes an optimizing
C/C++ compiler, an assembly optimizer, an assembler, a linker, and assorted utilities. This chapter
provides an overview of these tools.

The TMS320C6000 is supported by the following assembly language development tools:

• Assembler

• Archiver

• Linker

• Library information archiver

• Absolute lister

• Cross-reference lister

• Object file display utility

• Disassembler

• Name utility

• Strip utility

• Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools.
For detailed information on the compiler and debugger, and for complete descriptions of the
TMS320C6000, refer to the books listed in Related Documentation From Texas Instruments.

Topic ... Page

1.1 Software Development Tools Overview .. 16
1.2 Tools Descriptions .. 17

15SPRU186V–July 2011 Introduction to the Software Development Tools
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

C/C++
source

files

C/C++
compiler

Assembler
source

Assembler

Executable
object file

Debugging
toolsLibrary-build

process

Run-time-
support
library

Archiver

Archiver

Macro
library

Absolute lister

Hex-conversion
utility

Cross-reference
lister

Object file
utilities

C6000

Linker

Linear
assembly

Assembly
optimizer

Assembly
optimized

file

Macro
source

files

Object
files

EPROM
programmer

Library of
object
files

Software Development Tools Overview www.ti.com

1.1 Software Development Tools Overview

Figure 1-1 shows the TMS320C6000 software development flow. The shaded portion highlights the most
common development path; the other portions are optional. The other portions are peripheral functions
that enhance the development process.

Figure 1-1. TMS320C6000 Software Development Flow

16 Introduction to the Software Development Tools SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Tools Descriptions

1.2 Tools Descriptions

The following list describes the tools that are shown in Figure 1-1:

• The C/C++ compiler accepts C/C++ source code and produces TMS320C6000 assembly language
source code. A shell program, an optimizer, and an interlist utility are included in the compiler
package:

– The shell program enables you to compile, assemble, and link source modules in one step.

– The optimizer modifies code to improve the efficiency of C/C++ programs.

– The interlist utility interlists C/C++ source statements with assembly language output to correlate
code produced by the compiler with your source code.

See the TMS320C6000 Optimizing Compiler User's Guide for more information.

• The assembly optimizer allows you to write linear assembly code without being concerned with the
pipeline structure or with assigning registers. It accepts assembly code that has not been
register-allocated and is unscheduled. The assembly optimizer assigns registers and uses loop
optimization to turn linear assembly into highly parallel assembly that takes advantage of software
pipelining. See the TMS320C6000 Optimizing Compiler User's Guide for more information.

• The assembler translates assembly language source files into machine language object modules.
Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control various aspects of the assembly process, such as the source listing
format, data alignment, and section content. See Chapter 3 through Chapter 5. See the TMS320C62x
DSP CPU and Instruction Set Reference Guide, TMS320C64x/C64x+ DSP CPU and Instruction Set
Reference Guide, TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide, and
TMS320C66x CPU and Instruction Set Reference Guide for detailed information on the assembly
language instruction set.

• The linker combines object files into a single static executable or object dynamic object module. As it
creates a static executable module, it performs relocation and resolves external references. The linker
accepts relocatable object modules (created by the assembler) as input. It also accepts archiver library
members and output modules created by a previous linker run. Link directives allow you to combine
object file sections, bind sections or symbols to addresses or within memory ranges, and define or
redefine global symbols. See Chapter 7.

For more information about creating a dynamic object module, see
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking.

• The archiver allows you to collect a group of files into a single archive file, called a library. For
example, you can collect several macros into a macro library. The assembler searches the library and
uses the members that are called as macros by the source file. You can also use the archiver to collect
a group of object files into an object library. The linker includes in the library the members that resolve
external references during the link. The archiver allows you to modify a library by deleting, replacing,
extracting, or adding members. See Section 6.1.

• The library information archiver allows you to create an index library of several object file library
versions, which is useful when several versions of a single library are available. This index library is the
used in the link step in place of a particular version of your object file library. See Section 6.5.

• You can use the library-build process to build your own customized run-time-support library. See the
TMS320C6000 Optimizing Compiler User's Guide for more information.

• The hex conversion utility converts an object file into TI-Tagged, ASCII-Hex, Intel, Motorola-S, or
Tektronix object format. The converted file can be downloaded to an EPROM programmer. See
Chapter 11.

• The absolute lister uses linked object files to create .abs files. These files can be assembled to
produce a listing of the absolute addresses of object code. See Chapter 8.

• The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definition, and their references in the linked source files. See Chapter 9.

• The main product of this development process is a module that can be executed in a TMS320C6000
device. You can use one of several debugging tools to refine and correct your code. Available products
include:

– An instruction-accurate and clock-accurate software simulator

– An XDS emulator

17SPRU186V–July 2011 Introduction to the Software Development Tools
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Tools Descriptions www.ti.com

In addition, the following utilities are provided:

• The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both human readable and XML formats. See Section 10.1.

• The disassembler writes the disassembled object code from object or executable files. See
Section 10.2.

• The name utility prints a list of names defined and referenced in a object or an executable file. See
Section 10.3.

• The strip utility removes symbol table and debugging information from object and executable files.
See Section 10.4.

18 Introduction to the Software Development Tools SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 2
SPRU186V–July 2011

Introduction to Object Modules

The assembler and linker create object modules that can be executed by a TMS320C6000 device.

Object modules make modular programming easier because they encourage you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are known as
sections. Both the assembler and the linker provide directives that allow you to create and manipulate
sections.

This chapter focuses on the concept and use of sections in assembly language programs.

Topic ... Page

2.1 Sections ... 20
2.2 How the Assembler Handles Sections ... 21
2.3 How the Linker Handles Sections .. 27
2.4 Relocation .. 28
2.5 Run-Time Relocation ... 30
2.6 Loading a Program .. 30
2.7 Symbols in an Object File ... 31
2.8 Object File Format Specifications .. 32

19SPRU186V–July 2011 Introduction to Object Modules
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Object file

.bss

.data

.text

RAM

EEPROM

ROM

Target memory

Sections www.ti.com

2.1 Sections

The smallest unit of an object file is called a section. A section is a block of code or data that occupies
contiguous space in the memory map with other sections. Each section of an object file is separate and
distinct. Object files usually contain three default sections:

.text section usually contains executable code

.data section usually contains initialized data

.bss section usually reserves space for uninitialized variables

In addition, the assembler and linker allow you to create, name, and link named sections that are used like
the .data, .text, and .bss sections.

There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are initialized; named
sections created with the .sect assembler directive are also initialized.

Uninitialized sections reserve space in the memory map for uninitialized data. The .bss section is
uninitialized; named sections created with the .usect assembler directive are
also uninitialized.

Several assembler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file
organized as shown in Figure 2-1.

One of the linker's functions is to relocate sections into the target system's memory map; this function is
called allocation. Because most systems contain several types of memory, using sections can help you
use target memory more efficiently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a section that contains an
initialization routine and then allocate the routine into a portion of the memory map that contains ROM.

Figure 2-1 shows the relationship between sections in an object file and a hypothetical target memory.

Figure 2-1. Partitioning Memory Into Logical Blocks

20 Introduction to Object Modules SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com How the Assembler Handles Sections

2.2 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section.
The assembler has five directives that support this function:

• .bss

• .usect

• .text

• .data

• .sect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create
initialized sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Section 2.2.4.

Default Sections Directive

NOTE: If you do not use any of the sections directives, the assembler assembles everything into
the .text section.

2.2.1 Uninitialized Sections

Uninitialized sections reserve space in TMS320C6000 memory; they are usually allocated into RAM.
These sections have no actual contents in the object file; they simply reserve memory. A program can use
this space at run time for creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler directives.

• The .bss directive reserves space in the .bss section.

• The .usect directive reserves space in a specific uninitialized named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or
the named section. The syntaxes for these directives are:

.bss symbol, size in bytes[, alignment[, bank offset]]

symbol .usect "section name" , size in bytes[, alignment[, bank offset]]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The
symbol corresponds to the name of the variable that you are reserving space for. It can
be referenced by any other section and can also be declared as a global symbol (with
the .global directive).

size in bytes is an absolute expression. The .bss directive reserves size in bytes bytes in the .bss
section. The .usect directive reserves size in bytes bytes in section name. For both
directives, you must specify a size; there is no default value.

alignment is an optional parameter. It specifies the minimum alignment in bytes required by the
space allocated. The default value is byte aligned. The value must be power of 2.

bank offset is an optional parameter. It ensures that the space allocated to the symbol occurs on a
specific memory bank boundary. The bank offset measures the number of bytes to
offset from the alignment specified before assigning the symbol to that location.

section name tells the assembler which named section to reserve space in. See Section 2.2.3.

21SPRU186V–July 2011 Introduction to Object Modules
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

How the Assembler Handles Sections www.ti.com

The initialized section directives (.text, .data, and .sect) tell the assembler to stop assembling into the
current section and begin assembling into the indicated section. The .bss and .usect directives, however,
do not end the current section and begin a new one; they simply escape from the current section
temporarily. The .bss and .usect directives can appear anywhere in an initialized section without affecting
its contents. For an example, see Section 2.2.6.

The .usect directive can also be used to create uninitialized subsections. See Section 2.2.4, for more
information on creating subsections.

2.2.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in
the object file and placed in TMS320C6000 memory when the program is loaded. Each initialized section
is independently relocatable and may reference symbols that are defined in other sections. The linker
automatically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The syntaxes for these directives
are:

.text

.data

.sect "section name"

When the assembler encounters one of these directives, it stops assembling into the current section
(acting as an implied end of current section command). It then assembles subsequent code into the
designated section until it encounters another .text, .data, or .sect directive.

Sections are built through an iterative process. For example, when the assembler first encounters a .data
directive, the .data section is empty. The statements following this first .data directive are assembled into
the .data section (until the assembler encounters a .text or .sect directive). If the assembler encounters
subsequent .data directives, it adds the statements following these .data directives to the statements
already in the .data section. This creates a single .data section that can be allocated continuously into
memory.

Initialized subsections are created with the .sect directive. The .sect directive can also be used to create
initialized subsections. See Section 2.2.4, for more information on creating subsections.

22 Introduction to Object Modules SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com How the Assembler Handles Sections

2.2.3 Named Sections

Named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but they are assembled separately.

For example, repeated use of the .text directive builds up a single .text section in the object file. When
linked, this .text section is allocated into memory as a single unit. Suppose there is a portion of executable
code (perhaps an initialization routine) that you do not want allocated with .text. If you assemble this
segment of code into a named section, it is assembled separately from .text, and you can allocate it into
memory separately. You can also assemble initialized data that is separate from the .data section, and
you can reserve space for uninitialized variables that is separate from the .bss section.

Two directives let you create named sections:

• The .usect directive creates uninitialized sections that are used like the .bss section. These sections
reserve space in RAM for variables.

• The .sect directive creates initialized sections, like the default .text and .data sections, that can contain
code or data. The .sect directive creates named sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect "section name" , size in bytes[, alignment[, bank offset]]

.sect "section name"

The section name parameter is the name of the section. For COFF, you can create up to 32 767 separate
named sections. For ELF, the max number of sections is 232-1 (4294967295). For the .usect and .sect
directives, a section name can refer to a subsection; see Section 2.2.4 for details.

Each time you invoke one of these directives with a new name, you create a new named section. Each
time you invoke one of these directives with a name that was already used, the assembler assembles
code or data (or reserves space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect directive and then try to use the
same section with .sect.

2.2.4 Subsections

Subsections are smaller sections within larger sections. Like sections, subsections can be manipulated by
the linker. Placing each function and object in a uniquely-named subsection allows finer-grained memory
placement, and also allows the linker finer-grained unused-function elimination. You can create
subsections by using the .sect or .usect directive. The syntaxes for a subsection name are:

symbol .usect "section name:subsection name" ,size in bytes[,alignment[,bank offset]]

.sect "section name:subsection name"

A subsection is identified by the base section name followed by a colon and the name of the subsection. A
subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:

.sect ".text:_func"

Using the linker's SECTIONS directive, you can allocate .text:_func separately, or with all the .text
sections. See Section 7.5.4.1 for an example using subsections.

You can create two types of subsections:

• Initialized subsections are created using the .sect directive. See Section 2.2.2.

• Uninitialized subsections are created using the .usect directive. See Section 2.2.1.

Subsections are allocated in the same manner as sections. See Section 7.5.4 for information on the
SECTIONS directive.

23SPRU186V–July 2011 Introduction to Object Modules
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

How the Assembler Handles Sections www.ti.com

2.2.5 Section Program Counters

The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembler fills a section with code or data, it increments the appropriate SPC. If you
resume assembling into a section, the assembler remembers the appropriate SPC's previous value and
continues incrementing the SPC from that value.

The assembler treats each section as if it began at address 0; the linker relocates each section according
to its final location in the memory map. See Section 2.4 for information on relocation.

2.2.6 Using Sections Directives

Figure 2-2 shows how you can build sections incrementally, using the sections directives to swap back
and forth between the different sections. You can use sections directives to begin assembling into a
section for the first time, or to continue assembling into a section that already contains code. In the latter
case, the assembler simply appends the new code to the code that is already in the section.

The format in Figure 2-2 is a listing file. Figure 2-2 shows how the SPCs are modified during assembly. A
line in a listing file has four fields:

Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.

See Section 3.12 for more information on interpreting the fields in a source listing.

24 Introduction to Object Modules SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

4 00000000 .data
5 00000000 00000011 coeff .word 011h,022h

00000004 00000022

9 00000000 .bss var1,4
10 00000004 .bss buffer,40

14 00000008 00001234 ptr .word 01234h

18 00000000 .text
19 00000000 00800528 sum: MVK 10,A1

20 00000004 021085E0 ZERO A4
21

22 00000008 01003664 aloop: LDW *A0++,A2
23 0000000c 00004000 NOP 3

24 00000010 0087E1A0 SUB A1,1,A1
25 00000014 021041E0 ADD A2,A4,A4

26 00000018 80000112 [A1] B aloop
27 0000001c 00008000 NOP 5

28

29 00000020 0200007C- STW A4, *+B14(var1)

33 0000000c .data
34 0000000c 000000AA ivals .word 0aah, 0bbh, 0cch

00000010 000000BB
00000014 000000CC

38 00000000 var2 .usect ”newvars”,4

39 00000004 inbuf .usect ”newvars”,4

43 00000024 .text

44 00000024 01003664 xmult: LDW *A0++,A2
45 00000028 00006000 NOP 4

46 0000002c 020C4480 MPYHL A2,A3,A4
47 00000030 02800028- MVKL var2,A5

48 00000034 02800068- MVKH var2,A5
49 00000038 02140274 STW A4,*A5

53 00000000 .sect ”vectors”

54 00000000 00000012’ B sum
55 00000004 00008000 NOP 5

Field 2Field 1 Field 3 Field 4

www.ti.com How the Assembler Handles Sections

Figure 2-2. Using Sections Directives Example

25SPRU186V–July 2011 Introduction to Object Modules
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Line numbers Object code

.text

.data

.bss

Section

00800528
021085E0
01003664

00000011
00000022
00001234
000000AA
000000BB

No data—
44 bytes
reserved

19
20
22

5
5

14
34
34

9

23
24

00004000
0087E1A0

vectors00000000’
00000024’

54
54

newvarsNo data—
8 bytes
reserved

38
39

25
26
27
29
44
45
46
47
48
49

021041E0
80000112
00008000
0200007C-
01003664
00006000
020C4480
02800028-
02800068-
02140274

34 000000CC

10

How the Assembler Handles Sections www.ti.com

As Figure 2-3 shows, the file in Figure 2-2 creates five sections:

.text contains 15 32-bit words of object code.

.data contains six words of initialized data.
vectors is a named section created with the .sect directive; it contains two words of object code.
.bss reserves 44 bytes in memory.
newvars is a named section created with the .usect directive; it contains eight bytes in memory.

The second column shows the object code that is assembled into these sections; the first column shows
the source statements that generated the object code.

Figure 2-3. Object Code Generated by the File in Figure 2-2

26 Introduction to Object Modules SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com How the Linker Handles Sections

2.3 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the sections in object files as
building blocks; it combines input sections (when more than one file is being linked) to create output
sections in an executable output module. Second, the linker chooses memory addresses for the output
sections.

Two linker directives support these functions:

• The MEMORY directive allows you to define the memory map of a target system. You can name
portions of memory and specify their starting addresses and their lengths.

• The SECTIONS directive tells the linker how to combine input sections into output sections and where
to place these output sections in memory.

Subsections allow you to manipulate sections with greater precision. You can specify subsections with the
linker's SECTIONS directive. If you do not specify a subsection explicitly, then the subsection is combined
with the other sections with the same base section name.

It is not always necessary to use linker directives. If you do not use them, the linker uses the target
processor's default allocation algorithm described in Section 7.7. When you do use linker directives, you
must specify them in a linker command file.

Refer to the following sections for more information about linker command files and linker directives:

• Section 7.5, Linker Command Files

• Section 7.5.3, The MEMORY Directive

• Section 7.5.4, The SECTIONS Directive

• Section 7.7, Default Allocation Algorithm

2.3.1 Default Memory Allocation

Figure 2-4 illustrates the process of linking two files together.

Figure 2-4. Combining Input Sections to Form an Executable Object Module

27SPRU186V–July 2011 Introduction to Object Modules
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Relocation www.ti.com

In Figure 2-4, file1.obj and file2.obj have been assembled to be used as linker input. Each contains the
.text, .data, and .bss default sections; in addition, each contains a named section. The executable object
module shows the combined sections. The linker combines the .text section from file1.obj and the .text
section from file2.obj to form one .text section, then combines the two .data sections and the two .bss
sections, and finally places the named sections at the end. The memory map shows how the sections are
put into memory.

By default, the linker begins at 0h and places the sections one after the other in the following order: .text,
.const, .data, .bss, .cinit, and then any named sections in the order they are encountered in the input files.

The C/C++ compiler uses the .const section to store string constants, and variables or arrays that are
declared as far const. The C/C++ compiler produces tables of data for autoinitializing global variables;
these variables are stored in a named section called .cinit (see Example 7-8). For more information on the
.const and .cinit sections, see the TMS320C6000 Optimizing Compiler User's Guide .

2.3.2 Placing Sections in the Memory Map

Figure 2-4 illustrates the linker's default method for combining sections. Sometimes you may not want to
use the default setup. For example, you may not want all of the .text sections to be combined into a single
.text section. Or you may want a named section placed where the .data section would normally be
allocated. Most memory maps contain various types of memory (RAM, ROM, EPROM, etc.) in varying
amounts; you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 7.5.3
and Section 7.5.4.

2.4 Relocation

The assembler treats each section as if it began at address 0. All relocatable symbols (labels) are relative
to address 0 in their sections. Of course, all sections cannot actually begin at address 0 in memory, so the
linker relocates sections by:

• Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive

• Adjusting symbol values to correspond to the new section addresses

• Adjusting references to relocated symbols to reflect the adjusted symbol values

The linker uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The linker then uses these entries to patch
the references after the symbols are relocated. Example 2-1 contains a code segment for a
TMS320C6000 device that generates relocation entries.

Example 2-1. Code That Generates Relocation Entries

1 .global X
2 00000000 00000012! Z: B X ; Uses an external relocation
3 00000004 0180082A' MVKL Y,B3 ; Uses an internal relocation
4 00000008 0180006A' MVKH Y,B3 ; Uses an internal relocation
5 0000000C 00004000 NOP 3
6
7 00000010 0001E000 Y: IDLE
8 00000014 00000212 B Y
9 00000018 00008000 NOP 5

In Example 2-1, both symbols X and Y are relocatable. Y is defined in the .text section of this module; X is
defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 16 (relative to address 0 in the .text
section). The assembler generates two relocation entries: one for X and one for Y. The reference to X is
an external reference (indicated by the ! character in the listing). The reference to Y is to an internally
defined relocatable symbol (indicated by the ' character in the listing).

28 Introduction to Object Modules SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Relocation

After the code is linked, suppose that X is relocated to address 0x7100. Suppose also that the .text
section is relocated to begin at address 0x7200; Y now has a relocated value of 0x7210. The linker uses
the two relocation entries to patch the two references in the object code:

00000012 B X 0fffe012becomes
0180082A MVKL Y 01B9082Abecomes
0180006A MVKH Y 1860006Abecomes

Under the ELF EABI, the relocations are symbol-relative rather than section-relative. This means that in
COFF, the relocation generated for 'Y' will actually have a reference to the '.text' section symbol and will
have an offset of 16. Under ELF, the relocation generated for 'Y' would actually refer to the symbol 'Y' and
resolve the value for 'Y' in the opcode based on where the definition of 'Y' ends up.

2.4.0.1 Expressions With Multiple Relocatable Symbols (COFF Only)

Sometimes an expression contains more than one relocatable symbol, or cannot be evaluated at
assembly time. In this case, the assembler encodes the entire expression in the object file. After
determining the addresses of the symbols, the linker computes the value of the expression as shown in
Example 2-2.

Example 2-2. Simple Assembler Listing

1 .global sym1, sym2
2
3 00000000 00800028% MVKL sym2 - sym1, A1

The symbols sym1 and sym2 are both externally defined. Therefore, the assembler cannot evaluate the
expression sym2 - sym1, so it encodes the expression in the object file. The '%' listing character indicates
a relocation expression. Suppose the linker relocates sym2 to 300h and sym1 to 200h. Then the linker
computes the value of the expression to be 300h - 200h = 100h. Thus the MVKL instruction is patched to:

00808028 MVKL 100h,A1

Expression Cannot Be Larger Than Space Reserved

NOTE: If the value of an expression is larger, in bits, than the space reserved for it, you will receive
an error message from the linker.

Each section in an object module has a table of relocation entries. The table contains one relocation entry
for each relocatable reference in the section. The linker usually removes relocation entries after it uses
them. This prevents the output file from being relocated again (if it is relinked or when it is loaded). A file
that contains no relocation entries is an absolute file (all its addresses are absolute addresses). If you
want the linker to retain relocation entries, invoke the linker with the --relocatable option (see
Section 7.4.2.2).

2.4.0.2 Dynamic Relocation Entries (ELF Only)

Under dynamic linking models, the processing of relocation entries is handled slightly differently. If a
relocation refers to a symbol that is imported from another dynamic module, then the static linker
generates a dynamic relocation which must be processed by the dynamic linker at dynamic load time
(when the definition of the imported symbol is available).

29SPRU186V–July 2011 Introduction to Object Modules
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Run-Time Relocation www.ti.com

2.5 Run-Time Relocation

At times you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in an external-memory-based system. The code must be loaded into
external memory, but it would run faster in internal memory.

The linker provides a simple way to handle this. Using the SECTIONS directive, you can optionally direct
the linker to allocate a section twice: first to set its load address and again to set its run address. Use the
load keyword for the load address and the run keyword for the run address.

The load address determines where a loader places the raw data for the section. Any references to the
section (such as references to labels in it) refer to its run address. The application must copy the section
from its load address to its run address before the first reference of the symbol is encountered at run time;
this does not happen automatically simply because you specify a separate run address. For an example
that illustrates how to move a block of code at run time, see Example 7-10.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is actually allocated as if it
were two separate sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The
linker allocates uninitialized sections only once; if you specify both run and load addresses, the linker
warns you and ignores the load address.

For a complete description of run-time relocation, see Section 7.5.5.

2.6 Loading a Program

The linker can be used to produce static executable object modules. An executable object module has the
same format as object files that are used as linker input; the sections in an executable object module,
however, are combined and relocated into target memory.

To run a program, the data in the executable object module must be transferred, or loaded, into target
system memory. Several methods can be used for loading a program, depending on the execution
environment. Common situations are described below:

• Code Composer Studio can load an executable object module onto hardware. The Code Composer
Studio loader reads the executable file and copies the program into target memory.

• You can use the hex conversion utility (hex6x, which is shipped as part of the assembly language
package) to convert the executable object module into one of several object file formats. You can then
use the converted file with an EPROM programmer to burn the program into an EPROM.

• A standalone simulator can be invoked by the load6x command and the name of the executable object
module. The standalone simulator reads the executable file, copies the program into the simulator and
executes it, displaying any C I/O.

30 Introduction to Object Modules SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Symbols in an Object File

2.7 Symbols in an Object File

An object file contains a symbol table that stores information about symbols in the program. The linker
uses this table when it performs relocation.

2.7.1 External Symbols

External symbols are symbols that are defined in one file and referenced in another file. You can use the
.def, .ref, or .global directive to identify symbols as external:

.def The symbol is defined in the current file and used in another file.

.ref The symbol is referenced in the current file, but defined in another file.

.global The symbol can be either of the above.

The following code segment illustrates these definitions.

.def x

.ref y

.global z

.global q

q: B B3
NOP 4
MVK 1, B1

x: MV A0,A1
MVKL y,B3
MVKH y,B3
B z
NOP 5

In this example, the .def definition of x says that it is an external symbol defined in this file and that other
files can reference x. The .ref definition of y says that it is an undefined symbol that is defined in another
file. The .global definition of z says that it is defined in some file and available in this file. The .global
definition of q says that it is defined in this file and that other files can reference q.

The assembler places x, y, z, and q in the object file's symbol table. When the file is linked with other
object files, the entries for x and q resolve references to x and q in other files. The entries for y and z
cause the linker to look through the symbol tables of other files for y's and z's definitions.

The linker must match all references with corresponding definitions. If the linker cannot find a symbol's
definition, it prints an error message about the unresolved reference. This type of error prevents the linker
from creating an executable object module.

31SPRU186V–July 2011 Introduction to Object Modules
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Object File Format Specifications www.ti.com

2.8 Object File Format Specifications

The object files created by the assembler and linker conform to either the ELF (Executable and Linking
Format) or COFF (Common Object File Format) binary formats, depending on the ABI selected when
building your program. When using the EABI mode, the ELF format is used. For the older COFF ABI
mode, the legacy COFF format is used.

Some features of the assembler may apply only to the ELF or COFF object file format. In these cases, the
proper object file format is stated in the feature description.

See the TMS320C6000 Optimizing Compiler User's Guide and The C6000 Embedded Application Binary
Interface Application Report for information on the different ABIs available.

See the Common Object File Format Application Note for information about the COFF object file format.

The ELF object files generated by the assembler and linker conform to the December 17, 2003 snapshot
of the System V generic ABI (or gABI).

32 Introduction to Object Modules SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://sco.com/developers/gabi/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 3
SPRU186V–July 2011

Assembler Description

The TMS320C6000 assembler translates assembly language source files into machine language object
files. These files are in object modules, which are discussed in Chapter 2. Source files can contain the
following assembly language elements:

Assembler directives described in Chapter 4
Macro directives described in Chapter 5
Assembly language instructions described in the TMS320C62x DSP CPU and Instruction Set

Reference Guide, TMS320C64x/C64x+ DSP CPU and
Instruction Set Reference Guide, TMS320C67x/C67x+ DSP
CPU and Instruction Set Reference Guide, and TMS320C66x
CPU and Instruction Set Reference Guide.

Topic ... Page

3.1 Assembler Overview .. 34
3.2 The Assembler's Role in the Software Development Flow 35
3.3 Invoking the Assembler ... 36
3.4 Controlling Application Binary Interface ... 37
3.5 Naming Alternate Directories for Assembler Input ... 37
3.6 Source Statement Format ... 40
3.7 Constants ... 43
3.8 Character Strings .. 45
3.9 Symbols ... 45
3.10 Expressions .. 53
3.11 Built-in Functions and Operators .. 56
3.12 Source Listings ... 61
3.13 Debugging Assembly Source .. 63
3.14 Cross-Reference Listings ... 64

33SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Assembler Overview www.ti.com

3.1 Assembler Overview

The assembler does the following:

• Processes the source statements in a text file to produce a relocatable object file

• Produces a source listing (if requested) and provides you with control over this listing

• Allows you to segment your code into sections and maintain a section program counter (SPC) for each
section of object code

• Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

• Allows conditional assembly

• Supports macros, allowing you to define macros inline or in a library

34 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

C/C++
source

files

C/C++
compiler

Assembler
source

Assembler

Executable
object file

Debugging
toolsLibrary-build

process

Run-time-
support
library

Archiver

Archiver

Macro
library

Absolute lister

Hex-conversion
utility

Cross-reference
lister

Object file
utilities

C6000

Linker

Linear
assembly

Assembly
optimizer

Assembly
optimized

file

Macro
source

files

Object
files

EPROM
programmer

Library of
object
files

www.ti.com The Assembler's Role in the Software Development Flow

3.2 The Assembler's Role in the Software Development Flow

Figure 3-1 illustrates the assembler's role in the software development flow. The shaded portion highlights
the most common assembler development path. The assembler accepts assembly language source files
as input, both those you create and those created by the TMS320C6000 C/C++ compiler.

Figure 3-1. The Assembler in the TMS320C6000 Software Development Flow

35SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Invoking the Assembler www.ti.com

3.3 Invoking the Assembler

To invoke the assembler, enter the following:

cl6x input file [options]

cl6x is the command that invokes the assembler through the compiler. The compiler considers
any file with an .asm extension to be an assembly file and calls the assembler.

input file names the assembly language source file.
options identify the assembler options that you want to use. Options are case sensitive and can

appear anywhere on the command line following the command. Precede each option with
one or two hyphens as shown.

The valid assembler options are listed in Table 3-1.

Some runtime model options such as --abi=coffabi or --abi=eabi, --big_endian or little_endian, and --silicon
version influence the behavior of the assembler. These options are passed to the compiler, assembler,
and linker from the shell utility, which is detailed in the TMS320C6000 Optimizing Compiler User's Guide.

Table 3-1. TMS320C6000 Assembler Options

Option Alias Description

--absolute_listing -aa Creates an absolute listing. When you use --absolute_listing, the assembler does not produce
an object file. The --absolute_listing option is used in conjunction with the absolute lister.

-ar=num Suppresses the assembler remark identified by num. A remark is an informational assembler
message that is less severe than a warning. If you do not specify a value for #, all remarks are
suppressed.

--asm_define=name[=def] -ad Sets the name symbol. This is equivalent to defining name with a .set directive in the case of a
numeric value or with an .asg directive otherwise. If value is omitted, the symbol is set to 1.
See Section 3.9.4.

--asm_dependency -apd Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of dependency lines suitable for input to a standard make utility. The list is written to a file
with the same name as the source file but with a .ppa extension.

--asm_includes -api Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of files included with the .include directive. The list is written to a file with the same name
as the source file but with a .ppa extension.

--asm_listing -al Produces a listing file with the same name as the input file with a .lst extension.

--asm_undefine=name -au Undefines the predefined constant name, which overrides any --asm_define options for the
specified constant.

--cmd_file=filename -@ Appends the contents of a file to the command line. You can use this option to avoid limitations
on command line length imposed by the host operating system. Use an asterisk or a
semicolon (* or ;) at the beginning of a line in the command file to include comments.
Comments that begin in any other column must begin with a semicolon. Within the command
file, filenames or option parameters containing embedded spaces or hyphens must be
surrounded with quotation marks. For example: "this-file.asm"

--copy_file=filename -ahc Copies the specified file for the assembly module. The file is inserted before source file
statements. The copied file appears in the assembly listing files.

--cross_reference -ax Produces a cross-reference table and appends it to the end of the listing file; it also adds
cross-reference information to the object file for use by the cross-reference utility. If you do not
request a listing file but use the --cross_reference option, the assembler creates a listing file
automatically, naming it with the same name as the input file with a .lst extension.

--include_file=filename -ahi Includes the specified file for the assembly module. The file is included before source file
statements. The included file does not appear in the assembly listing files.

--include_path=pathname Specifies a directory where the assembler can find files named by the .copy, .include, or .mlib-I
directives. There is no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the --include_path option. See Section 3.5.1.

--output_all_syms -as Puts all defined symbols in the object file's symbol table. The assembler usually puts only
global symbols into the symbol table. When you use --output_all_syms, symbols defined as
labels or as assembly-time constants are also placed in the table.

--quiet -q Suppresses the banner and progress information (assembler runs in quiet mode).

36 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Controlling Application Binary Interface

Table 3-1. TMS320C6000 Assembler Options (continued)

Option Alias Description

--symdebug:dwarf -g Enables assembler source debugging in the C source debugger. Line information is output to
the object module for every line of source in the assembly language source file. You cannot
use the --symdebug:dwarf option on assembly code that contains .line directives. See
Section 3.13.

--syms_ignore_case -ac Makes case insignificant in the assembly language files. For example, --syms_ignore_case
makes the symbols ABC and abc equivalent. If you do not use this option, case is significant
(default). Case significance is enforced primarily with symbol names, not with mnemonics and
register names.

3.4 Controlling Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. An ABI allows ABI-compliant object code to link together,
regardless of its source, and allows the resulting executable to run on any system that supports that ABI

Object modules conforming to different ABIs cannot be linked together. The linker detects this situation
and generates an error.

The C6000 compiler supports two ABIs. The ABI is chosen through the --abi option as follows:

• COFF ABI (--abi=coffabi)

The COFF ABI is the original ABI format. There is no COFF to ELF conversion possible; recompile or
reassemble assembly code.

• C6000 EABI (--abi=eabi)

Use this option to select the C6000 Embedded Application Binary Interface (EABI).

All code in an EABI application must be built for EABI. Make sure all your libraries are available in
EABI mode before migrating your existing COFF ABI systems to C6000 EABI. For full details, see
http://tiexpressdsp.com/index.php/EABI_Support_in_C6000_Compiler and The C6000 Embedded
Application Binary Interface Application Report (SPRAB89).

3.5 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and
.include directives tell the assembler to read source statements from another file, and the .mlib directive
names a library that contains macro functions. Chapter 4 contains examples of the .copy, .include, and
.mlib directives. The syntax for these directives is:

.copy ["]filename["]

.include ["]filename["]

.mlib ["]filename["]

The filename names a copy/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. Quotes are
recommended so that there is no issue in dealing with path information that is included in the filename
specification or path names that include white space. The filename may be a complete pathname, a partial
pathname, or a filename with no path information. The assembler searches for the file in the following
locations in the order given:

1. The directory that contains the current source file. The current source file is the file being assembled
when the .copy, .include, or .mlib directive is encountered.

2. Any directories named with the --include_path option

3. Any directories named with the C6X_A_DIR environment variable

4. Any directories named with the C6X_C_DIR environment variable

37SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://tiexpressdsp.com/index.php/EABI_Support_in_C6000_Compiler
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Naming Alternate Directories for Assembler Input www.ti.com

Because of this search hierarchy, you can augment the assembler's directory search algorithm by using
the --include_path option (described in Section 3.5.1) or the C6X_A_DIR environment variable (described
in Section 3.5.2). The C6X_C_DIR environment variable is discussed in the TMS320C6000 Optimizing
Compiler User's Guide.

3.5.1 Using the --include_path Assembler Option

The --include_path assembler option names an alternate directory that contains copy/include files or
macro libraries. The format of the --include_path option is as follows:

cl6x --include_path= pathname source filename [other options]

There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying
path information. If the assembler does not find the file in the directory that contains the current source
file, it searches the paths designated by the --include_path options.

For example, assume that a file called source.asm is in the current directory; source.asm contains the
following directive statement:

.copy "copy.asm"

Assume the following paths for the copy.asm file:

UNIX: /tools/files/copy.asm
Windows: c:\tools\files\copy.asm

You could set up the search path with the commands shown below:

Operating System Enter

UNIX (Bourne shell) cl6x --include_path=/tools/files source.asm

Windows cl6x --include_path=c:\tools\files source.asm

The assembler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

3.5.2 Using the C6X_A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses
the C6X_A_DIR environment variable to name alternate directories that contain copy/include files or
macro libraries.

The assembler looks for the C6X_A_DIR environment variable and then reads and processes it. If the
assembler does not find the C6X_A_DIR variable, it then searches for C6X_C_DIR. The
processor-specific variables are useful when you are using Texas Instruments tools for different
processors at the same time.

See the TMS320C6000 Optimizing Compiler User's Guide for details on C6X_C_DIR.

The command syntax for assigning the environment variable is as follows:

Operating System Enter

UNIX (Bourne Shell) C6X_A_DIR=" pathname1 ; pathname2 ; . . . " ; export C6X_A_DIR

Windows set C6X_A_DIR= pathname1 ; pathname2 ; . . .

38 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Naming Alternate Directories for Assembler Input

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must
follow these constraints:

• Pathnames must be separated with a semicolon.

• Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:
set C6X_A_DIR= c:\path\one\to\tools ; c:\path\two\to\tools

• Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set C6X_A_DIR=c:\first path\to\tools;d:\second path\to\tools

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information.
If the assembler does not find the file in the directory that contains the current source file or in directories
named by the --include_path option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:
.copy "copy1.asm"
.copy "copy2.asm"

Assume the following paths for the files:

UNIX: /tools/files/copy1.asm and /dsys/copy2.asm
Windows: c:\tools\files\copy1.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter

UNIX (Bourne shell) C6X_A_DIR="/dsys"; export C6X_A_DIR
cl6x --include_path=/tools/files source.asm

Windows set C6X_A_DIR=c:\dsys
cl6x --include_path=c:\tools\files source.asm

The assembler first searches for copy1.asm and copy2.asm in the current directory because source.asm
is in the current directory. Then the assembler searches in the directory named with the --include_path
option and finds copy1.asm. Finally, the assembler searches the directory named with C6X_A_DIR and
finds copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of
these commands:

Operating System Enter

UNIX (Bourne shell) unset C6X_A_DIR

Windows set C6X_A_DIR=

39SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Source Statement Format www.ti.com

3.6 Source Statement Format

TMS320C6000 assembly language source programs consist of source statements that can contain
assembler directives, assembly language instructions, macro directives, and comments. A source
statement can contain five ordered fields (label, mnemonic, unit specifier, operand list, and comment). The
general syntax for source statements is as follows:

[label[:]] [||] [[register]] mnemonic [unit specifier] [operand list][;comment]

A label can only be associated with the first instruction in an execute packet (a group of instructions that is
to be executed in parallel).

Following are examples of source statements:
two .set 2 ; Symbol Two = 2
Label: MVK two,A2 ; Move 2 into register A2

.word 016h ; Initialize a word with 016h

There is no limit on characters per source statement. Use a backslash (\) to indicate continuation of the
same instruction/directive across multiple lines.

Follow these guidelines:

• All statements must begin with a label, a blank, an asterisk, or a semicolon.

• Labels are optional; if used, they must begin in column 1.

• One or more blanks must separate each field. Tab and space characters are blanks. You must
separate the operand list from the preceding field with a blank.

• Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or ;), but comments that begin in any other column must begin with a semicolon.

• In a conditional instruction, the condition register must be surrounded by square brackets.

• The functional unit specifier is optional. If you do not specify the functional unit, the assembler assigns
a legal functional unit based on the mnemonic field and the other instructions in the execute packet.

• A mnemonic cannot begin in column 1 or it will be interpreted as a label.

The following sections describe each of the fields.

40 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

||
||
||
||
||

Inst1
Inst2
Inst3
Inst4
Inst5
Inst6
Inst7

These five instructions run
in parallel with the first
instruction.

www.ti.com Source Statement Format

3.6.1 Label Field

Labels are optional for all assembly language instructions and for most (but not all) assembler directives.
When used, a label must begin in column 1 of a source statement. A label can contain up to 128
alphanumeric characters (A-Z, a-z, 0-9, _, and $). Labels are case sensitive (except when the
--syms_ignore_case option is used), and the first character cannot be a number. A label can be followed
by a colon (:). The colon is not treated as part of the label name. If you do not use a label, the first
character position must contain a blank, a semicolon, or an asterisk. You cannot use a label on an
instruction that is in parallel with a previous instruction.

When you use a label, its value is the current value of the SPC. The label points to the statement it is
associated with. For example, if you use the .word directive to initialize several words, a label points to the
first word. In the following example, the label Start has the value 40h.
. . . .
. . . .

9 * Assume some code was assembled
10 00000040 0000000A Start: .word 0Ah,3,7

00000044 00000003
00000048 00000007

The label assigns the current value of the section program counter to the label; this is equivalent to the
following directive statement:
label .equ $; $ provides the current value of the SPC

When a label appears on a line by itself, it points to the instruction on the next line (the SPC is not
incremented):

1 00000000 Here:
2 00000000 00000003 .word 3

If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.

3.6.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is
interpreted as a label. There is one exception: the parallel bars (||) of the mnemonic field can start in
column 1. The mnemonic field can begin with one of the following items:

• Parallel bars (||) indicate instructions that are in parallel with a previous instruction. You can have up to
eight instructions that will be executed in parallel. The following example demonstrates six instructions
to be executed in parallel:

• Square brackets ([]) indicate conditional instructions. The machine-instruction mnemonic is executed
based on the value of the register within the brackets; valid register names are A0 for C64xx only, A1,
A2, B0, B1, and B2. These registers are often called predicate registers.

The instruction is executed if the value of the register is nonzero. If the register name is preceded by
an exclamation point (!), then the instruction is executed if the value of the register is 0. For example:
[A1] ZERO A2 ; If A1 is not equal to zero, A2 = 0

The preceding exclamation point, if specified, is called a "logical NOT operator" or a "unary NOT
operator".

41SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Source Statement Format www.ti.com

Next, the mnemonic field contains one of the following items:

• Machine-instruction mnemonic (such as ADDK, MVKH, B)

• Assembler directive (such as .data, .list, .equ, .macro, .var, .mexit)

The || and "[predicate register]" contructs are not legal in combination with an assembler directive.

• Macro call

3.6.3 Unit Specifier Field

The unit specifier field is an optional field that follows the mnemonic field for machine-instruction
mnemonics. The unit specifier field begins with a period (.) followed by a functional unit specifier. In
general, one instruction can be assigned to each functional unit in a single instruction cycle. There are
eight functional units, two of each functional type:

.D1 and .D2 Data/addition/subtraction

.L1 and .L2 ALU/compares/long data arithmetic

.M1 and .M2 Multiply

.S1 and .S2 Shift/ALU/branch/bit field
ALU refers to an arithmetic logic unit.

There are several ways to use the unit specifier field:

• You can specify the particular functional unit (for example, .D1).

• You can specify only the functional type (for example, .M), and the assembler assigns the specific unit
(for example, .M2).

• If you do not specify the functional unit, the assembler assigns the functional unit based on the
mnemonic field, operand fields, and other instructions in the same execute packet.

For more information on functional units, including which assembly instructions require which functional
type, see the TMS320C62x DSP CPU and Instruction Set Reference Guide, TMS320C64x/C64x+ DSP
CPU and Instruction Set Reference Guide, or TMS320C67x/C67x+ DSP CPU and Instruction Set
Reference Guide.

3.6.4 Operand Field

The operand field follows the mnemonic field and contains one or more operands. The operand field is not
required for all instructions or directives. An operand consists of the following items:

• Constants (see Section 3.7)

• Character strings (see Section 3.8)

• Symbols (see Section 3.9)

• Expressions (combination of constants and symbols; see Section 3.10)

You must separate operands with commas.

3.6.5 Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain
any ASCII character, including blanks. Comments are printed in the assembly source listing, but they do
not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.

42 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Constants

3.7 Constants

The assembler supports several types of constants:

• Binary integer

• Octal integer

• Decimal integer

• Hexadecimal integer

• Character

• Assembly time

The assembler maintains each constant internally as a 32-bit quantity. Constants are not sign extended.
For example, the constant 00FFh is equal to 00FF (base 16) or 255 (base 10); it does not equal -1.
However, when used with the .byte directive, -1 is equivalent to 00FFh.

3.7.1 Binary Integers

A binary integer constant is a string of up to 32 binary digits (0s and 1s) followed by the suffix B (or b). If
fewer than 32 digits are specified, the assembler right justifies the value and fills the unspecified bits with
zeros. These are examples of valid binary constants:

00000000B Constant equal to 010 or 016

0100000b Constant equal to 3210 or 2016

01b Constant equal to 110 or 116

11111000B Constant equal to 24810 or 0F816

3.7.2 Octal Integers

An octal integer constant is a string of up to 11 octal digits (0 through 7) followed by the suffix Q (or q).
These are examples of valid octal constants:

10Q Constant equal to 810 or 816

010 Constant equal to 810 or 816 © format)
100000Q Constant equal to 32 76810 or 800016

226q Constant equal to 15010 or 9616

3.7.3 Decimal Integers

A decimal integer constant is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295.
These are examples of valid decimal constants:

1000 Constant equal to 100010 or 3E816

-32768 Constant equal to -32 76810 or 800016

25 Constant equal to 2510 or 1916

43SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Constants www.ti.com

3.7.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits followed by the suffix H (or h)
or preceded by 0x. Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. A
hexadecimal constant must begin with a decimal value (0-9). If fewer than eight hexadecimal digits are
specified, the assembler right justifies the bits. These are examples of valid hexadecimal constants:

78h Constant equal to 12010 or 007816

0x78 Constant equal to 12010 or 007816 © format)
0Fh Constant equal to 1510 or 000F16

37ACh Constant equal to 14 25210 or 37AC16

3.7.5 Character Constants

A character constant is a single character enclosed in single quotes. The characters are represented
internally as 8-bit ASCII characters. Two consecutive single quotes are required to represent each single
quote that is part of a character constant. A character constant consisting only of two single quotes is valid
and is assigned the value 0. These are examples of valid character constants:

'a' Defines the character constant a and is represented internally as 6116

'C' Defines the character constant C and is represented internally as 4316

'''' Defines the character constant ' and is represented internally as 2716

'' Defines a null character and is represented internally as 0016

Notice the difference between character constants and character strings (Section 3.8 discusses
character strings). A character constant represents a single integer value; a string is a sequence of
characters.

3.7.6 Assembly-Time Constants

If you use the .set directive to assign a value to a symbol (see Define Assembly-Time Constant), the
symbol becomes a constant. To use this constant in expressions, the value that is assigned to it must be
absolute. For example:
sym .set 3

MVK sym,B1

You can also use the .set directive to assign symbolic constants for register names. In this case, the
symbol becomes a synonym for the register:
sym .set B1

MVK 10,sym

44 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Character Strings

3.8 Character Strings

A character string is a string of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string
varies and is defined for each directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program" defines the 14-character string sample program.
"PLAN " "C" " " defines the 8-character string PLAN "C".

Character strings are used for the following:

• Filenames, as in .copy "filename"

• Section names, as in .sect "section name"

• Data initialization directives, as in .byte "charstring"

• Operands of .string directives

3.9 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol name is a string of
alphanumeric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and _). The first character in a
symbol cannot be a number, and symbols cannot contain embedded blanks. The symbols you define are
case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three unique symbols. You
can override case sensitivity with the --syms_ignore_case assembler option (see Section 3.3). A symbol is
valid only during the assembly in which it is defined, unless you use the .global directive or the .def
directive to declare it as an external symbol (see Identify Global Symbols).

3.9.1 Labels

Symbols used as labels become symbolic addresses that are associated with locations in the program.
Labels used locally within a file must be unique. Mnemonic opcodes and assembler directive names
without the . prefix are valid label names.

Labels can also be used as the operands of .global, .ref, .def, or .bss directives; for example:
.global label1

label2: MVKL label2, B3
MVKH label2, B3
B label1
NOP 5

3.9.2 Local Labels

Local labels are special labels whose scope and effect are temporary. A local label can be defined in two
ways:

• $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See
Example 3-1.

• name?, where name is any legal symbol name as described above. The assembler replaces the
question mark with a period followed by a unique number. When the source code is expanded, you will
not see the unique number in the listing file. Your label appears with the question mark as it did in the
source definition. You cannot declare this label as global. See Example 3-2.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the
operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined
by directives.

45SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Symbols www.ti.com

A local label can be undefined or reset in one of these ways:

• By using the .newblock directive

• By changing sections (using a .sect, .text, or .data directive)

• By entering an include file (specified by the .include or .copy directive)

• By leaving an include file (specified by the .include or .copy directive)

Example 3-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:
$1:

SUB A1,1,A1
[A1] B $1

SUBC A3,A0,A3
NOP 4

.newblock ; undefine $1 to use it again

$1 SUB A2,1,A2
[A2] B $1

MPY A3,A3,A3
NOP 4

The following code uses a local label illegally:
$1:

SUB A1,1,A1
[A1] B $1

SUBC A3,A0,A3
NOP 4

$1 SUB A2,1,A2 ; WRONG - $1 is multiply defined
[A2] B $1

MPY A3,A3,A3
NOP 4

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is
redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than
once, the assembler issues a multiple-definition error. If you use a local label and .newblock within a
macro, however, the local label is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels of the form name? are not
limited. After you undefine a local label, you can define it and use it again. Local labels do not appear in
the object code symbol table.

Because local labels are intended to be used only locally, branches to local labels are not expanded in
case the branch's offset is out of range.

46 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Symbols

Example 3-2. Local Labels of the Form name?

**
** First definition of local label mylab **
**

nop
mylab? nop

B mylab?
nop 5

**
** Include file has second definition of mylab **
**

.copy "a.inc"
**
** Third definition of mylab, reset upon exit from .include **
**
mylab? nop

B mylab?
nop 5

**
** Fourth definition of mylab in macro, macros use different **
** namespace to avoid conflicts **
**
mymac .macro
mylab? nop

B mylab?
nop 5
.endm

**
** Macro invocation **
**

mymac
**
** Reference to third definition of mylab. Definition is not **
** reset by macro invocation. **
**

B mylab?
nop 5

**
** Changing section, allowing fifth definition of mylab **
**

.sect "Sect_One"
nop

mylab? .word 0
nop
nop
B mylab?
nop 5

**
** The .newblock directive allows sixth definition of mylab **
**

.newblock
mylab? .word 0

nop
nop
B mylab?
nop 5

47SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Symbols www.ti.com

3.9.3 Symbolic Constants

Symbols can be set to constant values. By using constants, you can equate meaningful names with
constant values. The .set and .struct/.tag/.endstruct directives enable you to set constants to symbolic
names. Symbolic constants cannot be redefined. The following example shows how these directives can
be used:
K .set 1024 ; constant definitions
maxbuf .set 2*K

item .struct ; item structure definition
value .int ; value offset = 0
delta .int ; delta offset = 4
i_len .endstruct ; item size = 8

array .tag item
.bss array, i_len*K ; declare an array of K "items"
.text
LDW *+B14(array.delta + 2*i_len),A1

; access array [2].delta

The assembler also has several predefined symbolic constants; these are discussed in Section 3.9.5.

3.9.4 Defining Symbolic Constants (--asm_define Option)

The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used
in place of a value in assembly source. The format of the --asm_define option is as follows:

cl6x --asm_define=name[=value]

The name is the name of the symbol you want to define. The value is the constant or string value you
want to assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:

• For Windows, use --asm_define= name ="\" value \"". For example, --asm_define=car="\"sedan\""

• For UNIX, use --asm_define= name ='" value "'. For example, --asm_define=car='"sedan"'

• For Code Composer, enter the definition in a file and include that file with the --cmd_file (or -@) option.

Once you have defined the name with the --asm_define option, the symbol can be used in place of a
constant value, a well-defined expression, or an otherwise undefined symbol used with assembly
directives and instructions. For example, on the command line you enter:
cl6x --asm_define=SYM1=1 --asm_define=SYM2=2 --asm_define=SYM3=3 --asm_define=SYM4=4 value.asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code.
Example 3-3 shows how the value.asm file uses these symbols without defining them explicitly.

Within assembler source, you can test the symbol defined with the --asm_define option with the following
directives:

Type of Test Directive Usage

Existence .if $isdefed(" name ")
Nonexistence .if $isdefed(" name ") = 0

Equal to value .if name = value

Not equal to value .if name != value

The argument to the $isdefed built-in function must be enclosed in quotes. The quotes cause the
argument to be interpreted literally rather than as a substitution symbol.

48 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Symbols

Example 3-3. Using Symbolic Constants Defined on Command Line

IF_4:if SYM4 = SYM2 * SYM2
.byte SYM4 ; Equal values
.else
.byte SYM2 * SYM2 ; Unequal values
.endif

IF_5: .if SYM1 <= 10
.byte 10 ; Less than / equal
.else
.byte SYM1 ; Greater than
.endif

IF_6: .if SYM3 * SYM2 != SYM4 + SYM2
.byte SYM3 * SYM2 ; Unequal value
.else
.byte SYM4 + SYM4 ; Equal values
.endif

IF_7: .if SYM1 = SYM2
.byte SYM1
.elseif SYM2 + SYM3 = 5
.byte SYM2 + SYM3
.endif

3.9.5 Predefined Symbolic Constants

The assembler has several predefined symbols, including the following types:

• $, the dollar-sign character, represents the current value of the section program counter (SPC). $ is a
relocatable symbol.

• Register symbols, including A0-A15 and B0-B15; and A16-31 and B16-31 for C6400, C6400+,
C6700+, C6740, and C6600.

• CPU control registers, including those listed in Table 3-2. Control registers can be entered as all
upper-case or all lower-case characters; for example, CSR can also be entered as csr.

• Processor symbols, including those listed in Table 3-3.

Table 3-2. CPU Control Registers

Register Description

AMR Addressing mode register

CSR Control status register

DESR (C6700+ only) dMAX event status register

DETR (C6700+ only) dMAX event trigger register

DNUM (C6400+, C6740, C6600 only) DSP core number register

ECR (C6400+, C6740, C6600 only) Exception clear register

EFR (C6400+, C6740, C6600 only) Exception flag register

FADCR (C6700, C6700+, C6740, C6600 only) Floating-point adder configuration register

FAUCR (C6700, C6700+, C6740, C6600 only) Floating-point auxiliary configuration
register

FMCR (C6700, C6700+, C6740, C6600 only) Floating-point multiplier configuration
register

GFPGFR (C6400 only) Galois field polynomial generator function register

GPLYA (C6400+, C6740, C6600 only) GMPY A-side polynomial register

GPLYB (C6400+, C6740, C6600 only) GMPY B-side polynomial register

ICR Interrupt clear register

49SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Symbols www.ti.com

Table 3-2. CPU Control Registers (continued)

Register Description

IER Interrupt enable register

IERR (C6400+, C6740, C6600 only) Interrupt exception report register

IFR Interrupt flag register

ILC (C6400+, C6740, C6600 only) Inner loop count register

NRP Nonmaskable interrupt return pointer

IRP Interrupt return pointer

ISR Interrupt set register

ITSR (C6400+, C6740, C6600 only) Interrupt task state register

ISTP Interrupt service table pointer

NTSR (C6400+, C6740, C6600 only) NMI/Exception task state register

PCE1 Program counter

REP (C6400+, C6740, C6600 only) Restricted entry point address register

RILC (C6400+, C6740, C6600 only) Reload inner loop count register

SSR (C6400+, C6740, C6600 only) Saturation status register

TSCH (C6400+, C6740, C6600 only) Time-stamp counter (high 32) register

TSCL (C6400+, C6740, C6600 only) Time-stamp counter (low 32) register

TSR (C6400+, C6740, C6600 only) Task status register

Table 3-3. Processor Symbols

Symbol name Description

_ _TI_EABI_ _ Set to 1 if EABI is enabled (see Section 3.4); otherwise, it is set to 0

.TMS320C6X Always set to 1

.TMS320C6200 Set to 1 if target is C6200, otherwise 0

.TMS320C6400 Set to 1 if target is C6400, C6400+, C6740, or C6600; otherwise 0

.TMS320C6400_PLUS Set to 1 if target is C6400+, C6740, or C6600; otherwise 0

.TMS320C6600 Set to 1 if target is C6600, otherwise 0

.TMS320C6700 Set to 1 if target is C6700, C6700+, C6740, or C6600; otherwise 0

.TMS320C6700_PLUS Set to 1 if target is C6700+, C6740, or C6600; otherwise 0

.TMS320C6740 Set to 1 if target is C6740 or C6600, otherwise 0

.LITTLE_ENDIAN Set to 1 if little-endian mode is selected (the -me assembler option is not
used); otherwise 0

.ASSEMBLER_VERSION Set to major * 1000000 + minor * 1000 + patch version.

.BIG_ENDIAN Set to 1 if big-endian mode is selected (the -me assembler option is used);
otherwise 0

.SMALL_MODEL Set to 1 if --memory_model:code=near and --memory_model:data=near,
otherwise 0.

.LARGE_MODEL Set to 1 if .SMALL_MODEL is 0, otherwise 0.

50 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Symbols

3.9.6 Register Pairs

Many instructions in the C6000 instruction set across the various available target processors (C6200,
C6400, C6400+, etc.) support a 64-bit register operand which can be specified as a register pair.

A register pair should be specified on the A side or the B side, depending on which functional unit an
instruction is to be executed on, and whether a cross functional unit data path is utilized by the instruction.
You cannot mix A-side and B-side registers in the same register pair operand.

The syntax for a register pair is as follows where (n%2 == 0):

Rn+1:Rn

The legal register pairs are:

A1:A0 B1:B0
A3:A2 B3:B2
A5:A4 B5:B4
A7:A6 B7:B6
A9:A8 B9:B8
A11:A10 B11:B10
A13:A12 B13:B12
A15:A14 B15:B14

In addition, these register pairs are available on C6400, C6400+, C6600 (not C62xx or C67xx):

A17:A16 B17:B16
A19:A18 B19:B18
A21:A20 B21:B20
A23:A22 B23:B22
A25:A24 B25:B24
A27:A26 B27:B26
A29:A30 B29:B30
A31:A32 B31:B32

Here is an example of an ADD instruction that uses a register pair operand:
ADD.L1 A5:A4,A1,A3:A2

For details on using register pairs in linear assembly, see the TMS320C6000 Optimizing Compiler User's
Guide.

For more information on functional units, including which assembly instructions require which functional
type, see the TMS320C62x DSP CPU and Instruction Set Reference Guide, TMS320C64x/C64x+ DSP
CPU and Instruction Set Reference Guide, TMS320C67x/C67x+ DSP CPU and Instruction Set Reference
Guide, or TMS320C66x CPU and Instruction Set Reference Guide.

51SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Symbols www.ti.com

3.9.7 Register Quads (C6600 Only)

Several instructions in the C6600 instruction set support a 128-bit register operand which can be specified
as a register quad.

A register quad should be specified on the A side or the B side, depending on which functional unit an
instruction is to be executed on, and whether a cross functional unit data path is utilized by the instruction.
You cannot mix A-side and B-side registers in the same register quad operand.

The general syntax for a register quad is as follows, where (n%4 == 0):

Rn+3:Rn+2:Rn+1:Rn or Rn+3::Rn

The legal register quads are:

A Register Quads Short Form B Register Quads Short Form

A3:A2:A1:A0 A3::A0 B3:B2:B1:B0 B3::B0

A7:A6:A5:A4 A7::A4 B7:B6:B5:B4 B7::B4

A11:A10:A9:A8 A11::A8 B11:B10:B9:B8 B11::B8

A15:A14:A13:A12 A15::A12 B15:B14:B13:B12 B15::B12

A19:A18:A17:A16 A19::A16 B19:B18:B17:B16 B19::B16

A23:A22:A21:A20 A23::A20 B23:B22:B21:B20 B23::B20

A27:A26:A25:A24 A27::A24 B27:B26:B25:B24 B27::B24

A31:A30:A29:A28 A31::A28 B31:B30:B29:B28 B31::B28

Here is an example of an ADD instruction that uses register quad operands:
QMPYSP .M1 A27:A26:A25:A24, A11:A10:A9:A8, A19:A18:A17:A16

For details on using register quads in C6600 linear assembly, see the TMS320C6000 Optimizing Compiler
User's Guide.

For more information on functional units, including which assembly instructions require which functional
type, see the TMS320C66x CPU and Instruction Set Reference Guide.

3.9.8 Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias character strings by equating
them to symbolic names. Symbols that represent character strings are called substitution symbols. When
the assembler encounters a substitution symbol, its string value is substituted for the symbol name. Unlike
symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:
.global _table
.asg "B14", PAGEPTR
.asg "*+B15(4)", LOCAL1
.asg "*+B15(8)", LOCAL2
LDW *+PAGEPTR(_table),A0
NOP 4
STW A0,LOCAL1

When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution
symbols are used in macros:
MAC .macro src1, src2, dst ; Multiply/Accumulate macro

MPY src1, src2, src2
NOP
ADD src2, dst, dst
.endm

* MAC macro invocation
MAC A0,A1,A2

See Chapter 5 for more information about macros.

52 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Expressions

3.10 Expressions

An expression is a constant, a symbol, or a series of constants and symbols separated by arithmetic
operators. The 32-bit ranges of valid expression values are -2147 483 648 to 2147 483 647 for signed
values, and 0 to 4 294 967 295 for unsigned values. Three main factors influence the order of expression
evaluation:

Parentheses Expressions enclosed in parentheses are always evaluated first.
8 / (4 / 2) = 4, but 8 / 4 / 2 = 1
You cannot substitute braces ({ }) or brackets ([]) for parentheses.

Precedence groups Operators, listed in Table 3-4, are divided into nine precedence groups.
When parentheses do not determine the order of expression evaluation,
the highest precedence operation is evaluated first.
8 + 4 / 2 = 10 (4 / 2 is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine the order of
expression evaluation, the expressions are evaluated from left to right,
except for Group 1, which is evaluated from right to left.
8 / 4*2 = 4, but 8 / (4*2) = 1

3.10.1 Operators

Table 3-4 lists the operators that can be used in expressions, according to precedence group.

Table 3-4. Operators Used in Expressions (Precedence)

Group (1) Operator Description (2)

1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT

2 * Multiplication
/ Division

% Modulo

3 + Addition
- Subtraction

4 << Shift left
>> Shift right

5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

6 =[=] Equal to
!= Not equal to

7 & Bitwise AND

8 ^ Bitwise exclusive OR (XOR)

9 | Bitwise OR
(1) Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
(2) Unary + and - have higher precedence than the binary forms.

3.10.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic operations are performed at
assembly time. It issues a warning (the message Value Truncated) whenever an overflow or underflow
occurs. The assembler does not check for overflow or underflow in multiplication.

53SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Expressions www.ti.com

3.10.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands. Well-defined expressions
contain only symbols or assembly-time constants that are defined before they are encountered in the
expression. The evaluation of a well-defined expression must be absolute.

This is an example of a well-defined expression:
1000h+X

where X was previously defined as an absolute symbol.

3.10.4 Conditional Expressions

The assembler supports relational operators that can be used in any expression; they are especially
useful for conditional assembly. Relational operators include the following:

= Equal to Not equal to! =
< Less than <= Less than or equal to
> Greater than > = Greater than or equal to
Conditional expressions evaluate to 1 if true and 0 if false and can be used only on operands of
equivalent types; for example, absolute value compared to absolute value, but not absolute value
compared to relocatable value.

3.10.5 Legal Expressions

With the exception of the following expression contexts, there is no restriction on combinations of
operations, constants, internally defined symbols, and externally defined symbols.

When an expression contains more than one relocatable symbol or cannot be evaluated at assembly time,
the assembler encodes a relocation expression in the object file that is later evaluated by the linker. If the
final value of the expression is larger in bits than the space reserved for it, you receive an error message
from the linker. See Section 2.4 for more information on relocation expressions.

• When using the register relative addressing mode, the expression in brackets or parenthesis must be a
well-defined expression, as described in Section 3.10.3. For example:

*+A4[15]

• Expressions used to describe the offset in register relative addressing mode for the registers B14 and
B15, or expressions used as the operand to the branch instruction, are subject to the same limitations.
For these two cases, all legal expressions can be reduced to one of two forms:

*+XA4[7]

B (extern_1-10)relocatable symbol ± absolute symbol
or

*+B14/B15[14]a well-defined expression

54 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Expressions

3.10.6 Expression Examples

Following are examples of expressions that use relocatable and absolute symbols. These examples use
four symbols that are defined in the same section:

.global extern_1 ; Defined in an external module
intern_1: .word '"D' ; Relocatable, defined in

; current module
intern_2 ; Relocatable, defined in

; current module
intern_3 ; Relocatable, defined in

; current module

• Example 1
In these contexts, there are no limitations on how expressions can be formed.

.word extern_1 * intern_2 - 13 ; Legal

MVKL (intern_1 - extern_1),A1 ; Legal

• Example 2
The first statement in the following example is valid; the statements that follow it are invalid.

B (extern_1 - 10) ; Legal
B (10-extern_1) ; Can't negate reloc. symbol
LDW *+B14 (-(intern_1)), A1 ; Can't negate reloc. symbol
LDW *+B14 (extern_1/10), A1 ; / not an additive operator
B (intern_1 + extern_1) ; Multiple relocatables

• Example 3
The first statement below is legal; although intern_1 and intern_2 are relocatable, their difference is
absolute because they are in the same section. Subtracting one relocatable symbol from another
reduces the expression to relocatable symbol + absolute value. The second statement is illegal
because the sum of two relocatable symbols is not an absolute value.

B (intern_1 - intern_2 + extern_3) ; Legal

B (intern_1 + intern_2 + extern_3) ; Illegal

• Example 4
A relocatable symbol's placement in the expression is important to expression evaluation. Although the
statement below is similar to the first statement in the previous example, it is illegal because of
left-to-right operator precedence; the assembler attempts to add intern_1 to extern_3.

B (intern_1 + extern_3 - intern_2) ; Illegal

55SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Built-in Functions and Operators www.ti.com

3.11 Built-in Functions and Operators

The assembler supports built-in mathematical functions and built-in addressing operators.

3.11.1 Built-In Math and Trigonometric Functions

The assembler supports built-in functions for conversions and various math computations. Table 3-5
describes the built-in functions. The expr must be a constant value.

The built-in substitution symbol functions are discussed in Section 5.3.2.

Table 3-5. Built-In Mathematical Functions

Function Description

$acos(expr) Returns the arc cosine of expr as a floating-point value

$asin(expr) Returns the arc sin of expr as a floating-point value

$atan(expr) Returns the arc tangent of expr as a floating-point value

$atan2(expr, y) Returns the arc tangent of expr as a floating-point value in range [-π, π]

$ceil(expr) Returns the smallest integer not less than expr

$cos(expr) Returns the cosine of expr as a floating-point value

$cosh(expr) Returns the hyperbolic cosine of expr as a floating-point value

$cvf(expr) Converts expr to a floating-point value

$cvi(expr) converts expr to integer value

$exp(expr) Returns the exponential function e expr

$fabs(expr) Returns the absolute value of expr as a floating-point value

$floor(expr) Returns the largest integer not greater than expr

$fmod(expr, y) Returns the remainder of expr1 ÷ expr2

$int(expr) Returns 1 if expr has an integer value; else returns 0. Returns an integer.

$ldexp(expr, expr2) Multiplies expr by an integer power of 2. That is, expr1 × 2 expr2

$log(expr) Returns the natural logarithm of expr, where expr>0

$log10(expr) Returns the base 10 logarithm of expr, where expr>0

$max(expr1, expr2) Returns the maximum of two values

$min(expr1, expr2) Returns the minimum of two values

$pow(expr1, expr2) Returns expr1raised to the power of expr2

$round(expr) Returns expr rounded to the nearest integer

$sgn(expr) Returns the sign of expr.

$sin(expr) Returns the sine of expr

$sinh(expr) Returns the hyperbolic sine of expr as a floating-point value

$sqrt(expr) Returns the square root of expr, expr≥0, as a floating-point value

$tan(expr) Returns the tangent of expr as a floating-point value

$tanh(expr) Returns the hyperbolic tangent of expr as a floating-point value

$trunc(expr) Returns expr rounded toward 0

56 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Built-in Functions and Operators

3.11.2 C6x Built-In Operators

The assembler supports several C6x-specific operators that are used in compiler-generated code to
support various forms of DP-relative and PC-relative addressing instruction sequences. For more detailed
information about DP-relative and PC-relative addressing instruction sequences, please see The C6000
Embedded Application Binary Interface Application Report (SPRAB89).

3.11.2.1 $DPR_BYTE(sym) / $DPR_HWORD(sym) / $DPR_WORD(sym)

The $DPR_BYTE(sym), $DPR_HWORD(sym), or $DPR_WORD(sym) operator can be applied in the
source operand of a MVKL or MVKH instruction to load the DP-relative offset of a symbol's address into a
register. These operators are used by the compiler when accessing data objects that are not within the
signed 15-bit offset range that is needed for using the DP-relative addressing mode.

For example, suppose the compiler needs to access a 32-bit aligned data object called 'xyz' that is defined
in the .far section. The compiler must assume that the .far section is too far away from the base of the
.bss section (whose address the runtime library's boot routine has loaded into the DP register), so using
DP-relative addressing mode to access 'xyz' directly is not possible. Instead, the compiler will use a
MVKL/MVKH/LDW sequence of instructions:

MVKL $DPR_WORD(xyz),A0 ; load (xyz - $bss)/4 into A0
MVKH $DPR_WORD(xyz),A0
LDW *+DP[A0],A1 ; load *xyz into A1

This sequence of instructions is also referred to as far DP-relative addressing. The LDW instruction uses a
scaled version of DP-relative indexed addressing. Similar to the $DPR_WORD(sym) operator, the
$DPR_BYTE(sym) operator is provided to facilitate far DP-relative addressing of 8-bit data objects:

MVKL $DPR_BYTE(xyz),A0 ; load (xyz - $bss) into A0
MVKH $DPR_BYTE(xyz),A0
LDB *+DP[A0],A1 ; load *xyz into A1

The $DPR_HWORD(sym) operator is provided to facilitate far DP-relative addressing of 16-bit data
objects:

MVKL $DPR_HWORD(xyz),A0 ; load (xyz - $bss)/2 into A0
MVKH $DPR_HWORD(xyz),A0
LDH *+DP[A0],A1 ; load *xyz into A1

For code on processors that are not compatible with C64x+, the compiler also uses these operators when
it needs to take the address of an object that is within signed 16-bit range of the DP. For example, the
compiler can compute the address of an 8-bit data object in the .bss section:

MVK $DPR_BYTE(_char_X),A4 ; load (_char_X - $bss) into A4
ADD DP,A4,A4 ; compute address of _char_X

Similarly, the compiler can compute the address of a 16-bit data object that is defined in the .bss section:
MVK $DPR_HWORD(_short_X),A4 ; load (_short_X - $bss)/2 into A4
ADD DP,A4,A4 ; compute address of _short_X

It can also compute a 32-bit data object that is defined in the .bss section:
MVK $DPR_WORD(_int_X),A4 ; load (_int_X - $bss)/4 into A4
ADD DP,A4,A4 ; compute address of _int_X

These operators were added to the assembler to assist in migrating existing COFF code, which used
expressions like 'xyz - $bss' to indicate DP-relative access to the address of a data object, to ELF code
which is able to resolve the DP-relative offset calculation with a single relocation.

In summary:
$DPR_BYTE(sym) is equivalent to 'sym - $bss'
$DPR_HWORD(sym) is equivalent to '(sym - $bss)/2'
$DPR_WORD(sym) is equivalent to '(sym - $bss)/4'

57SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Built-in Functions and Operators www.ti.com

3.11.2.2 $GOT(sym) / $DPR_GOT(sym)

The $GOT(sym) operator can be applied in the source operand of an LDW instruction. The
$DPR_GOT(sym) operator can be applied in the source operand of a MVKL or MVKH instruction. These
operators are used in the context of compiler-generated code under a dynamic linking ABI (either the
Bare-Metal or Linux Dynamic Linking Model; see the external wiki
(http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking) for more details on the dynamic linking
models supported in the C6000 Code Generation Tools (CGT)).

Symbols that are preemptable or are imported by a dynamic module will be accessed via the Global Offset
Table (GOT). A GOT entry for a symbol will contain the address of the symbol as it is determined at
dynamic load time. To facilitate this resolution, the static linker will emit a dynamic relocation entry that is
to be processed by the dynamic linker/loader. For more information on the GOT, see the Dynamic Linking
wiki site or The C6000 Embedded Application Binary Interface Application Report (SPRAB89).

If the GOT entry for a symbol, xyz, is accessible using DP-relative addressing mode, then the compiler will
generate a sequence to load the symbol that uses the $GOT(sym) op0erator as the offset part of the
DP-relative addressing mode operand:

LDW *+DP[$GOT(xyz)],A0 ; load address of xyz into A0
; via access to GOT entry

LDW *A0,A1 ; load xyz into A2

The actual semantics of the $GOT(sym) operator is to return the DP- relative offset of the GOT entry for
the referenced symbol (xyz above).

While $DPR_GOT(sym) is semantically similar to the $GOT(sym) operator, it is used when the GOT is not
accessible using DP-relative addressing mode (offset is not within signed 15-bit range of the static base
address that is loaded into the data pointer register (DP)). The DP-relative offset to the GOT entry is then
loaded into an index register using a MVKL/MVKH instruction sequence, and the GOT entry is then
accessed via DP-relative indexed addressing to load the address of the referenced symbol:

MVKL $DPR_GOT(xyz),A0 ; load DP-relative offset of
MVKH $DPR_GOT(xyz),A0 ; GOT entry for xyz into A0
LDW *+DP[A0],A1 ; get address of xyz via GOT entry
LDW *A1,A2 ; load xyz into A2

3.11.2.3 $PCR_OFFSET(x,y)

The $PCR_OFFSET(x,y) operator can be applied in the source operand of a MVKL, MVKH, or ADDK
instruction to compute a PC-relative offset to be loaded into (in the case of MVKL/MVKH) or added to (in
the case of ADDK) a register.

This operator is used in the context of compiler-generated code under the Linux ABI (using --linux
compiler option). It helps the compiler to generate position-independent code by accessing a symbol that
is defined in the same RO segment using PC-relative addressing.

For example, if there is to be a call to a function defined in the same file, but you would like to avoid
generating a dynamic relocation that accesses the symbol that represents the destination of the call, then
you can use the $PCR_OFFSET operator as follows:
dest:

<code>
...

make_pcr_call:
MVC PCE1, B0 ; set up PC reference point in B0
MVKL $PCR_OFFSET(dest, make_pcr_call), B1 ; compute dest - make_pcr_call
MVKH $PCR_OFFSET(dest, make_pcr_call), B1 ; and load it into B1
ADD B0,B1,B0 ; compute dest address into B0 register
B B0 ; call dest indirectly through B0
...

The above code sequence is position independent. No matter what address 'dest' is placed at load time,
the call to 'dest' will still work since it is independent of the actual address of 'dest'. However, the call does
have to maintain its position relative to the definition of 'dest'.

58 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Built-in Functions and Operators

Also in the above sequence, the compiler creates a coupling between the MVC instruction and the
'make_pcr_call' label. The 'make_pcr_call' label must be associated with the address of the MVC
instruction so that when the $PCR_OFFSET(dest, make_pcr_call) operator is applied, the 'make_pcr_call'
symbol becomes a representative for the PC reference point. This means that the result of 'dest -
make_pcr_call' becomes the PC-relative offset which when added to the PC reference point in B0 gives
the address of 'dest'.

The relocation that is generated for the $PCR_OFFSET() operator is handled during the static link step in
which a dynamic module is built. This static relocation can then be discarded and no dynamic relocation
will be needed to resolve the call to 'dest' in the above example.

3.11.2.4 $LABEL_DIFF(x,y) Operator

The $LABEL_DIFF(x,y) operator can be applied to an argument for a 32-bit data-defining directive (like
.word, for example). The operator simply computes the difference between two labels that are defined in
the same section. This operator is sometimes used by the compiler under the Linux ABI (--linux compiler
option) when generating position independent code for a switch statement.

For example, in Example 3-4 a switch table is generated which contains the PC-relative offsets of the
switch case labels:

Example 3-4. Generating a Switch Table With Offset Switch Case Labels

.asg A15, FP

.asg B14, DP

.asg B15, SP

.global $bss

.sect ".text"

.clink

.global myfunc
;**
;* FUNCTION NAME: myfunc *
;**
myfunc:
;** --*

B .S1 CL10
|| SUB .L2X A4,10,B5
|| STW .D2T2 B3,*SP--(16)

CMPGTU .L2 B5,7,B0
|| STW .D2T1 A4,*+SP(12)
|| MV .S2X A4,B4
[B0] BNOP .S1 CL9,3

; BRANCH OCCURS {CL10} ; |6|
;** --*
CL1:

<case 0 code>
...

;** --*
CL2:

<case 1 code>
...

;** --*
CL3:

<case 2 code>
...

;** --*
CL4:

<case 3 code>
...

;** --*
CL5:

<case 4 code>

59SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Built-in Functions and Operators www.ti.com

Example 3-4. Generating a Switch Table With Offset Switch Case Labels (continued)

...
;** --*
CL6:

<case 5 code>
...

;** --*
CL7:

<case 6 code>
...

;** --*
CL8:

<case 7 code>
...

;** --*
CL9:

<default case code>
...

;** --*
CL10:

NOP 2
; BRANCHCC OCCURS {CL9} {-9} ;

;** --*
SUB .L2 B4,10,B5 ; Norm switch value -> switch table index

|| ADDKPC .S2 CSW1,B4,0 ; Load address of switch table to B4
LDW .D2T2 *+B4[B5],B5 ; Load PC-relative offset from switch table
NOP 4
ADD .L2 B5,B4,B4 ; Combine to get case label into B5
BNOP .S2 B4,5 ; Branch to case label
; BRANCH OCCURS {B4} ;

; Switch table definition
.align 32
.clink

CSW1: .nocmp
.word $LABEL_DIFF($C$L1,$C$SW1) ; 10
.word $LABEL_DIFF($C$L2,$C$SW1) ; 11
.word $LABEL_DIFF($C$L3,$C$SW1) ; 12
.word $LABEL_DIFF($C$L4,$C$SW1) ; 13
.word $LABEL_DIFF($C$L5,$C$SW1) ; 14
.word $LABEL_DIFF($C$L6,$C$SW1) ; 15
.word $LABEL_DIFF($C$L7,$C$SW1) ; 16
.word $LABEL_DIFF($C$L8,$C$SW1) ; 17
.align 32
.sect ".text"
...

Example 3-4 mixes data into the code section. For C64+ compatible processors, compression will be
disabled for the code section that contains the $LABEL_DIFF() operator since the label difference must
resolve to a constant value at assembly time.

60 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Source Listings

3.12 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke
the assembler with the --asm_listing option (see Section 3.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied
by the .title directive is printed on the title line. A page number is printed to the right of the title. If you do
not use the .title directive, the name of the source file is printed. The assembler inserts a blank line below
the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. and show these in actual
listing files.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. Figure 3-2 shows these in
an actual listing file.

Field 1: Source Statement Number
Line number
The source statement number is a decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the line counter but are not listed. (For
example, .title statements and statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of intervening statements in the source file that
are not listed.
Include file letter
A letter preceding the line number indicates the line is assembled from the include file designated by
the letter.
Nesting level number
A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter
This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named
sections) maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

Field 3: Object Code
This field contains the hexadecimal representation of the object code. All machine instructions and
directives use this field to list object code. This field also indicates the relocation type associated with
an operand for this line of source code. If more than one operand is relocatable, this column indicates
the relocation type for the first operand. The characters that can appear in this column and their
associated relocation types are listed below:

! undefined external reference
' .text relocatable
+ .sect relocatable
" .data relocatable
- .bss, .usect relocatable

% relocation expression

Field 4: Source Statement Field
This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the
spacing in the source statement.

Figure 3-2 shows an assembler listing with each of the four fields identified.

61SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

number

2 ** Global variables

4 00000000 .bss var1, 4
5 00000004 .bss var2, 4
6

8 ** Include multiply macro

10 .copy mpy32.inc
A 1 mpy32 .macro A,B
A 2

A 5

A 7

A 9

A 11

A 13 .endm
11

15 00000000 .text
16 00000000 _func
17 00000000 0200006C- LDW *+B14(var1),A4
18 00000004 0000016E- LDW *+B14(var2),B0
19 00000008 00006000 NOP 4
20 0000000c mpy32 A4,B0

1

1

1

1

1

21 00000024 000C6362 B B3
22 00000028 00008000 NOP 5
23 * end _func

Include file
letter Line numberNesting level

Field 1 Field 2 Field 3 Field 4

Source Listings www.ti.com

Figure 3-2. Example Assembler Listing

62 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Debugging Assembly Source

3.13 Debugging Assembly Source

When you invoke cl6x with --symdebug:dwarf (or -g) when compiling an assembly file, the assembler
provides symbolic debugging information that allows you to step through your assembly code in a
debugger rather than using the Disassembly window in Code Composer Studio. This enables you to view
source comments and other source-code annotations while debugging.

The .asmfunc and .endasmfunc (see Mark Function Boundaries) directives enable you to use C
characteristics in assembly code that makes the process of debugging an assembly file more closely
resemble debugging a C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed
by the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions
named with this syntax:

$ filename : starting source line : ending source line $

If you want to view your variables as a user-defined type in C code, the types must be declared and the
variables must be defined in a C file. This C file can then be referenced in assembly code using the .ref
directive (see Identify Global Symbols).

Example 3-5 shows the cvar.c C program that defines a variable, svar, as the structure type X. The svar
variable is then referenced in the addfive.asm assembly program in Example 3-6 and 5 is added to svar's
second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:
cl6x --symdebug:dwarf cvars.c addfive.asm --run_linker --library=lnk.cmd --library=rts6200.lib

--output_file=addfive.out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor
the values in svar while stepping through main just as you would any regular C variable.

Example 3-5. Viewing Assembly Variables as C Types C Program

typedef struct
{

int m1;
int m2;

} X;
X svar = { 1, 2 };

Example 3-6. Assembly Program for Example 3-5

;--
; Tell the assembler we're referencing variable "_svar", which is defined in
; another file (cvars.c).
;--

.ref _svar
;--
; addfive() - Add five to the second data member of _svar
;--

.text

.global addfive
addfive: .asmfunc

LDW .D2T2 *+B14(_svar+4),B4 ; load svar.m2 into B4
RET .S2 B3 ; return from function
NOP 3 ; delay slots 1-3
ADD .D2 5,B4,B4 ; add 5 to B4 (delay slot 4)
STW .D2T2 B4,*+B14(_svar+4) ; store B4 back into svar.m2 (delay slot 5)

.endasmfunc

63SPRU186V–July 2011 Assembler Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Cross-Reference Listings www.ti.com

3.14 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke
the assembler with the --cross_reference option (see Section 3.3) or use the .option directive with the X
operand (see Select Listing Options). The assembler appends the cross-reference to the end of the
source listing. Example 3-7 shows the four fields contained in the cross-reference listing.

Example 3-7. An Assembler Cross-Reference Listing

LABEL VALUE DEFN REF

.BIG_ENDIAN 00000000 0

.LITTLE_ENDIAN 00000001 0

.TMS320C6200 00000001 0

.TMS320C6700 00000000 0

.TMS320C6X 00000001 0
_func 00000000' 18
var1 00000000- 4 17
var2 00000004- 5 18

Label column contains each symbol that was defined or referenced during the assembly.
Value column contains an 8-digit hexadecimal number (which is the value assigned to the

symbol) or a name that describes the symbol's attributes. A value may also be
preceded by a character that describes the symbol's attributes. Table 3-6 lists these
characters and names.

Definition (DEFN) column contains the statement number that defines the symbol. This
column is blank for undefined symbols.

Reference (REF) column lists the line numbers of statements that reference the symbol. A
blank in this column indicates that the symbol was never used.

Table 3-6. Symbol Attributes

Character or Name Meaning

REF External reference (global symbol)

UNDF Undefined

' Symbol defined in a .text section

" Symbol defined in a .data section

+ Symbol defined in a .sect section

- Symbol defined in a .bss or .usect section

64 Assembler Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 4
SPRU186V–July 2011

Assembler Directives

Assembler directives supply data to the program and control the assembly process. Assembler directives
enable you to do the following:

• Assemble code and data into specified sections

• Reserve space in memory for uninitialized variables

• Control the appearance of listings

• Initialize memory

• Assemble conditional blocks

• Define global variables

• Specify libraries from which the assembler can obtain macros

• Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 4.1 through Section 4.11) describes the
directives according to function, and the second part (Section 4.12) is an alphabetical reference.

Topic ... Page

4.1 Directives Summary .. 66
4.2 Directives That Define Sections .. 70
4.3 Directives That Initialize Constants .. 72
4.4 Directives That Perform Alignment and Reserve Space ... 73
4.5 Directives That Format the Output Listings .. 74
4.6 Directives That Reference Other Files .. 75
4.7 Directives That Enable Conditional Assembly ... 76
4.8 Directives That Define Union or Structure Types ... 76
4.9 Directives That Define Enumerated Types .. 77
4.10 Directives That Define Symbols at Assembly Time .. 77
4.11 Miscellaneous Directives .. 78
4.12 Directives Reference .. 79

65SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Summary www.ti.com

4.1 Directives Summary

Table 4-1 through Table 4-16 summarize the assembler directives.

Besides the assembler directives documented here, the TMS320C6000 software tools support the
following directives:

• The assembler uses several directives for macros. Macro directives are discussed in Chapter 5; they
are not discussed in this chapter.

• The assembly optimizer uses several directives that supply data and control the optimization process.
Assembly optimizer directives are discussed in the TMS320C6000 Optimizing Compiler User's Guide.

• The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. Appendix A discusses these directives;
they are not discussed in this chapter.

Labels and Comments Are Not Shown in Syntaxes

NOTE: Any source statement that contains a directive can also contain a label and a comment.
Labels begin in the first column (only labels and comments can appear in the first column),
and comments must be preceded by a semicolon, or an asterisk if the comment is the only
element in the line. To improve readability, labels and comments are not shown as part of
the directive syntax.

Table 4-1. Directives That Define Sections

Mnemonic and Syntax Description See

.bss symbol, size in bytes[, alignment Reserves size bytes in the .bss (uninitialized data) section .bss topic
[, bank offset]]

.clink Enables conditional linking for the current or specified section .clink topic

.data Assembles into the .data (initialized data) section .data topic

.retain Instructs the linker to include the current or specified section in the .retain topic
linked output file, regardless of whether the section is referenced or
not

.sect "section name" Assembles into a named (initialized) section .sect topic

.text Assembles into the .text (executable code) section .text topic

symbol .usect "section name" , size in bytes Reserves size bytes in a named (uninitialized) section .usect topic
[, alignment[, bank offset]]

Table 4-2. Directives That Initialize Values (Data and Memory)

Mnemonic and Syntax Description See

.byte value1[, ... , valuen] Initializes one or more successive bytes in the current section .byte topic

.char value1[, ... , valuen] Initializes one or more successive bytes in the current section .char topic

.cstring {expr1|"string1" }[,... , {exprn|"stringn" }] Initializes one or more text strings .string topic

.double value1[, ... , valuen] Initializes one or more 64-bit, IEEE double-precision, floating-point .double topic
constants

.field value[, size] Initializes a field of size bits (1-32) with value .field topic

.float value1[, ... , valuen] Initializes one or more 32-bit, IEEE single-precision, floating-point .float topic
constants

.half value1[, ... , valuen] Initializes one or more 16-bit integers (halfword) .half topic

.int value1[, ... , valuen] Initializes one or more 32-bit integers .int topic

.long value1[, ... , valuen] Initializes one or more 32-bit integers .long topic

.short value1[, ... , valuen] Initializes one or more 16-bit integers (halfword) .short topic

.string {expr1|"string1" }[,... , {exprn|"stringn" }] Initializes one or more text strings .string topic

.ubyte value1[, ... , valuen] Initializes one or more successive unsigned bytes in the current .ubyte topic
section

.uhalf value1[, ... , valuen] Initializes one or more unsigned 16-bit integers (halfword) .uhalf topic

66 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Summary

Table 4-2. Directives That Initialize Values (Data and Memory) (continued)

Mnemonic and Syntax Description See

.uint value1[, ... , valuen] Initializes one or more unsigned 32-bit integers .uint topic

.ushort value1[, ... , valuen] Initializes one or more unsigned 16-bit integers (halfword) .ushort topic

.uword value1[, ... , valuen] Initializes one or more unsigned 32-bit integers .uword topic

.word value1[, ... , valuen] Initializes one or more 32-bit integers .word topic

Table 4-3. Directives That Perform Alignment and Reserve Space

Mnemonic and Syntax Description See

.align [size in bytes] Aligns the SPC on a boundary specified by size in bytes, which .align topic
must be a power of 2; defaults to byte boundary

.bes size Reserves size bytes in the current section; a label points to the end .bes topic
of the reserved space

.space size Reserves size bytes in the current section; a label points to the .space topic
beginning of the reserved space

Table 4-4. Directives That Format the Output Listing

Mnemonic and Syntax Description See

.drlist Enables listing of all directive lines (default) .drlist topic

.drnolist Suppresses listing of certain directive lines .drnolist topic

.fclist Allows false conditional code block listing (default) .fclist topic

.fcnolist Suppresses false conditional code block listing .fcnolist topic

.length [page length] Sets the page length of the source listing .length topic

.list Restarts the source listing .list topic

.mlist Allows macro listings and loop blocks (default) .mlist topic

.mnolist Suppresses macro listings and loop blocks .mnolist topic

.nolist Stops the source listing .nolist topic

.option option1 [, option2 , . . .] Selects output listing options; available options are A, B, D, H, L, .option topic
M, N, O, R, T, W, and X

.page Ejects a page in the source listing .page topic

.sslist Allows expanded substitution symbol listing .sslist topic

.ssnolist Suppresses expanded substitution symbol listing (default) .ssnolist topic

.tab size Sets tab to size characters .tab topic

.title "string" Prints a title in the listing page heading .title topic

.width [page width] Sets the page width of the source listing .width topic

Table 4-5. Directives That Reference Other Files

Mnemonic and Syntax Description See

.copy ["]filename["] Includes source statements from another file .copy topic

.include ["]filename["] Includes source statements from another file .include topic

.mlib ["]filename["] Specifies a macro library from which to retrieve macro definitions .mlib topic

67SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Summary www.ti.com

Table 4-6. Directives That Effect Symbol Linkage and Visibility

Mnemonic and Syntax Description See

.def symbol1[, ... , symboln] Identifies one or more symbols that are defined in the current .def topic
module and that can be used in other modules

.global symbol1[, ... , symboln] Identifies one or more global (external) symbols .global topic

.ref symbol1[, ... , symboln] Identifies one or more symbols used in the current module that are .ref topic
defined in another module

.symdepend dst symbol name[, src symbol name] Creates an artificial reference from a section to a symbol .symdepend topic

.weak symbol name Identifies a symbol used in the current module that is defined in .weak topic
another module

Table 4-7. Directives That Control Dynamic Symbol Visibility

Mnemonic and Syntax Description See

.export "symbolname" Sets visibility of symbolname to STV_EXPORT .export topic

.hidden"symbolname" Sets visibility of symbolname to STV_HIDDEN .hidden topic

.import "symbolname" Sets visibility of symbolname to STV_IMPORT .import topic

.protected "symbolname" Sets visibility of symbolname to STV_PROTECTED .protected topic

Table 4-8. Directives That Enable Conditional Assembly

Mnemonic and Syntax Description See

.break [well-defined expression] Ends .loop assembly if well-defined expression is true. When using .break topic
the .loop construct, the .break construct is optional.

.else Assembles code block if the .if well-defined expression is false. .else topic
When using the .if construct, the .else construct is optional.

.elseif well-defined expression Assembles code block if the .if well-defined expression is false and .elseif topic
the .elseif condition is true. When using the .if construct, the .elseif
construct is optional.

.endif Ends .if code block .endif topic

.endloop Ends .loop code block .endloop topic

.if well-defined expression Assembles code block if the well-defined expression is true .if topic

.loop [well-defined expression] Begins repeatable assembly of a code block; the loop count is .loop topic
determined by the well-defined expression.

Table 4-9. Directives That Define Union or Structure Types

Mnemonic and Syntax Description See

.cstruct Acts like .struct, but adds padding and alignment like that which is .cstruct topic
done to C structures

.cunion Acts like .union, but adds padding and alignment like that which is .cunion topic
done to C unions

.emember Sets up C-like enumerated types in assembly code Section 4.9

.endenum Sets up C-like enumerated types in assembly code Section 4.9

.endstruct Ends a structure definition .cstruct topic,
.struct topic

.endunion Ends a union definition .cunion topic,
.union topic

.enum Sets up C-like enumerated types in assembly code Section 4.9

.union Begins a union definition .union topic

.struct Begins structure definition .struct topic

.tag Assigns structure attributes to a label .cstruct topic,
.struct topic
.union topic

68 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Summary

Table 4-10. Directives That Define Symbols

Mnemonic and Syntax Description See

.asg ["]character string["], substitution symbol Assigns a character string to substitution symbol .asg topic

.clearmap Cancels all .map assignments. Used by compiler for linear .clearmap topic
assembly source.

symbol .equ value Equates value with symbol .equ topic

.elfsym name, SYM_SIZE(size) Provides ELF symbol information .elfsym topic

.eval well-defined expression , Performs arithmetic on a numeric substitution symbol .eval topic
substitution symbol

.label symbol Defines a load-time relocatable label in a section .label topic

.mapsymbol/register Assigns symbol toregister. Used by compiler for linear assembly .map topic
source.

.newblock Undefines local labels .newblock topic

symbol .set value Equates value with symbol .set topic

.unasg symbol Turns off assignment of symbol as a substitution symbol .unasg topic

.undefine symbol Turns off assignment of symbol as a substitution symbol .unasg topic

Table 4-11. Directives That Define Common Data Sections

Mnemonic and Syntax Description See

.endgroup Ends the group declaration .endgroup topic

.gmember section name Designates section name as a member of the group .gmember topic

.group group section name group type : Begins a group declaration .group topic

Table 4-12. Directives That Create or Effect Macros

Mnemonic and Syntax Description See

.endm End macro definition .endm topic

Begins repeatable assembly of a code block; the loop count is.loop[well-defined expression] .loop topicdetermined by the well-defined expression.

macname .macro [parameter1][,... , parametern] Define macro by macname .macro topic

.mexit Go to .endm Section 5.2

.mlib filename Identify library containing macro definitions .mlib topic

.var Adds a local substitution symbol to a macro's parameter list .var topic

Table 4-13. Directives That Control Diagnostics

Mnemonic and Syntax Description See

.emsg string Sends user-defined error messages to the output device; .emsg topic
produces no .obj file

.mmsg string Sends user-defined messages to the output device .mmsg topic

.noremark[num] Identifies the beginning of a block of code in which the assembler .noremark topic
suppresses the num remark

.remark [num] Resumes the default behavior of generating the remark(s) .remark topic
previously suppressed by .noremark

.wmsg string Sends user-defined warning messages to the output device .wmsg topic

Table 4-14. Directives That Perform Assembly Source Debug

Mnemonic and Syntax Description See

.asmfunc Identifies the beginning of a block of code that contains a function .asmfunc topic

.endasmfunc Identifies the end of a block of code that contains a function .endasmfunc
topic

69SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives That Define Sections www.ti.com

Table 4-15. Directives That Are Used by the Absolute Lister

Mnemonic and Syntax Description See

.setsect Produced by absolute lister; sets a section Chapter 8

.setsym Produced by the absolute lister; sets a symbol Chapter 8

Table 4-16. Directives That Perform Miscellaneous Functions

Mnemonic and Syntax Description See

.cdecls [options ,]" filename" [, " filename2" [, ...] Share C headers between C and assembly code .cdecls topic

.end Ends program .end topic

.nocmp Instructs tools to not utilize 16-bit instructions for section .nocmp topic

In addition to the assembly directives that you can use in your code, the compiler produces several
directives when it creates assembly code. These directives are to be used only by the compiler; do not
attempt to use these directives.

• DWARF directives listed in Section A.1

• COFF/STABS directives listed in Section A.2

• The .battr directive is used to encode build attributes for the object file. For more information about
build attributes generated and used by the C6000 Code Generation Tools, please see The C6000
Embedded Application Binary Interface application report (SPRAB89).

• The .template directive is used for early template instantiation. It encodes information about a template
that has yet to be instantiated. This is a COFF C++ directive.

• The .compiler_opts directive indicates that the assembly code was produced by the compiler, and
which build model options were used for this file.

4.2 Directives That Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

• The .bss directive reserves space in the .bss section for uninitialized variables.

• The .clink directive can be used in the COFF ABI model to indicate that a section is eligible for
removal at link-time via conditional linking. Thus if no other sections included in the link reference the
current or specified section, then the section is not included in the link. The .clink directive can be
applied to initialized or uninitialized sections.

• The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

• The .retain directive can be used in the EABI model to indicate that the current or specified section
must be included in the linked output. Thus even if no other sections included in the link reference the
current or specified section, it is still included in the link.

• The .sect directive defines an initialized named section and associates subsequent code or data with
that section. A section defined with .sect can contain code or data.

• The .text directive identifies portions of code in the .text section. The .text section usually contains
executable code.

• The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to
the .bss directive, but it allows you to reserve space separately from the .bss section.

Chapter 2 discusses these sections in detail.

Example 4-1 shows how you can use sections directives to associate code and data with the proper
sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values.
(Each section has its own program counter, or SPC.) When code is first placed in a section, its SPC
equals 0. When you resume assembling into a section after other code is assembled, the section's SPC
resumes counting as if there had been no intervening code.

The directives in Example 4-1 perform the following tasks:

70 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives That Define Sections

.text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
var_defs initializes words with the values 17 and 18.
.bss reserves 19 bytes.
xy reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the
specified amount of space, and then the assembler resumes assembling code or data into the current
section.

Example 4-1. Sections Directives

00000004 00000002
6 00000008 00000003 .word 3,4
0000000c 00000004

7
8 **
9 * Start assembling into the .data section *
10 **
11 00000000 .data
12 00000000 00000009 .word 9, 10

00000004 0000000A
13 00000008 0000000B .word 11, 12

0000000c 0000000C
14
15 **
16 * Start assembling into a named, *
17 * initialized section, var_defs *
18 **
19 00000000 .sect "var_defs"
20 00000000 00000011 .word 17, 18

00000004 00000012
21
22 **
23 * Resume assembling into the .data section *
24 **
25 00000010 .data
26 00000010 0000000D .word 13, 14

00000014 0000000E
27 00000000 .bss sym, 19 ; Reserve space in .bss
28 00000018 0000000F .word 15, 16 ; Still in .data

0000001c 00000010
29
30 **
31 * Resume assembling into the .text section *
32 **
33 00000010 .text
34 00000010 00000005 .word 5, 6

00000014 00000006
35 00000000 usym .usect "xy", 20 ; Reserve space in xy
36 00000018 00000007 .word 7, 8 ; Still in .text

0000001c 00000008

71SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives That Initialize Constants www.ti.com

4.3 Directives That Initialize Constants

Several directives assemble values for the current section:

• The .byte and .char directives place one or more 8-bit values into consecutive bytes of the current
section. These directives are similar to .long and .word, except that the width of each value is restricted
to eight bits.

• The .double directive calculates the double-precision (64-bit) IEEE floating-point representation of one
or more floating-point values and stores them in two consecutive words in the current section. The
.double directive automatically aligns to the double-word boundary.

• The .field directive places a single value into a specified number of bits in the current word. With .field,
you can pack multiple fields into a single word; the assembler does not increment the SPC until a word
is filled.

Figure 4-1 shows how fields are packed into a word. Using the following assembled code, notice that
the SPC does not change (the fields are packed into the same word):

1 00000000 00000003 .field 3,4
2 00000000 00000083 .field 8,5
3 00000000 00002083 .field 16,7

Figure 4-1. The .field Directive

• The .float directive calculates the single-precision (32-bit) IEEE floating-point representation of a single
floating-point value and stores it in a word in the current section that is aligned to a word boundary.

• The .half, .uhalf, .short, and .ushort directives place one or more 16-bit values into consecutive 16-bit
fields (halfwords) in the current section. The .half and .short directives automatically align to a short
(2-byte) boundary.

• The .int, .uint, .long, .word, .uword directives place one or more 32-bit values into consecutive 32-bit
fields (words) in the current section. The .int, .long, and .word directives automatically align to a word
boundary.

• The .string and .cstring directives place 8-bit characters from one or more character strings into the
current section. The .string and .cstring directives are similar to .byte, placing an 8-bit character in each
consecutive byte of the current section. The .cstring directive adds a NUL character needed by C; the
.string directive does not add a NUL character.

Directives That Initialize Constants When Used in a .struct/.endstruct Sequence

NOTE: The .byte, .char, .int, .long, .word, .double, .half, .short, .string, .float, and .field directives do
not initialize memory when they are part of a .struct/ .endstruct sequence; rather, they define
a member’s size. For more information, see the .struct/.endstruct directives.

Figure 4-2 compares the .byte, .half, .word, and .string directives. Using the following assembled code:
1 00000000 000000AB .byte 0ABh
2 .align 4
3 00000004 0000CDEF .half 0CDEFh
4 00000008 89ABCDEF .word 089ABCDEFh
5 0000000c 00000068 .string "help"
0000000d 00000065
0000000e 0000006C
0000000f 00000070

72 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives That Perform Alignment and Reserve Space

Figure 4-2. Initialization Directives

4.4 Directives That Perform Alignment and Reserve Space

These directives align the section program counter (SPC) or reserve space in a section:

• The .align directive aligns the SPC at the next byte boundary. This directive is useful with the .field
directive when you do not want to pack two adjacent fields in the same byte.

Figure 4-3 demonstrates the .align directive. Using the following assembled code:
1
2 00000000 00AABBCC .field 0AABBCCh,24
3 .align 2
4 00000000 0BAABBCC .field 0Bh,5
5 00000004 000000DE .field 0DEh,10

Figure 4-3. The .align Directive

73SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

17 bytes
reserved

20 bytes
reserved

Res_1 = 08h

Res_2 = 33h

Directives That Format the Output Listings www.ti.com

• The .bes and .space directives reserve a specified number of bytes in the current section. The
assembler fills these reserved bytes with 0s.

– When you use a label with .space, it points to the first byte that contains reserved bits.

– When you use a label with .bes, it points to the last byte that contains reserved bits.

Figure 4-4 shows how the .space and .bes directives work for the following assembled code:
1
2 00000000 00000100 .word 100h, 200h
00000004 00000200

3 00000008 Res_1: .space 17
4 0000001c 0000000F .word 15
5 00000033 Res_2: .bes 20
6 00000034 000000BA .byte 0BAh

Res_1 points to the first byte in the space reserved by .space. Res_2 points to the last byte in the
space reserved by .bes.

Figure 4-4. The .space and .bes Directives

4.5 Directives That Format the Output Listings

These directives format the listing file:

• The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off
for certain directives. You can use the .drnolist directive to suppress the printing of the following
directives. You can use the .drlist directive to turn the listing on again.

.asg .eval .length .mnolist .var

.break .fclist .mlist .sslist .width

.emsg .fcnolist .mmsg .ssnolist .wmsg

• The source code listing includes false conditional blocks that do not generate code. The .fclist and
.fcnolist directives turn this listing on and off. You can use the .fclist directive to list false conditional
blocks exactly as they appear in the source code. You can use the .fcnolist directive to list only the
conditional blocks that are actually assembled.

• The .length directive controls the page length of the listing file. You can use this directive to adjust
listings for various output devices.

• The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to
prevent the assembler from printing selected source statements in the listing file. Use the .list directive
to turn the listing on again.

• The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives
turn this listing on and off. You can use the .mlist directive to print all macro expansions and loop
blocks to the listing, and the .mnolist directive to suppress this listing.

• The .option directive controls certain features in the listing file. This directive has the following
operands:

74 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives That Reference Other Files

A turns on listing of all directives and data, and subsequent expansions, macros, and blocks.
B limits the listing of .byte and .char directives to one line.
D turns off the listing of certain directives (same effect as .drnolist).
H limits the listing of .half and .short directives to one line.
L limits the listing of .long directives to one line.
M turns off macro expansions in the listing.
N turns off listing (performs .nolist).
O turns on listing (performs .list).
R resets the B, H, L, M, T, and W directives (turns off the limits of B, H, L, M, T, and W).
T limits the listing of .string directives to one line.
W limits the listing of .word and .int directives to one line.
X produces a cross-reference listing of symbols. You can also obtain a cross-reference listing

by invoking the assembler with the --cross_reference option (see Section 3.3).

• The .page directive causes a page eject in the output listing.

• The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives
turn this listing on and off. You can use the .sslist directive to print all substitution symbol expansions
to the listing, and the .ssnolist directive to suppress this listing. These directives are useful for
debugging the expansion of substitution symbols.

• The .tab directive defines tab size.

• The .title directive supplies a title that the assembler prints at the top of each page.

• The .width directive controls the page width of the listing file. You can use this directive to adjust
listings for various output devices.

4.6 Directives That Reference Other Files

These directives supply information for or about other files that can be used in the assembly of the current
file:

• The .copy and .include directives tell the assembler to begin reading source statements from another
file. When the assembler finishes reading the source statements in the copy/include file, it resumes
reading source statements from the current file. The statements read from a copied file are printed in
the listing file; the statements read from an included file are not printed in the listing file.

• The .def directive identifies a symbol that is defined in the current module and that can be used in
another module. The assembler includes the symbol in the symbol table.

• The .global directive declares a symbol external so that it is available to other modules at link time.
(For more information about global symbols, see Section 2.7.1). The .global directive does double duty,
acting as a .def for defined symbols and as a .ref for undefined symbols. The linker resolves an
undefined global symbol reference only if the symbol is used in the program. The .global directive
declares a 16-bit symbol.

• The .mlib directive supplies the assembler with the name of an archive library that contains macro
definitions. When the assembler encounters a macro that is not defined in the current module, it
searches for it in the macro library specified with .mlib.

• The .ref directive identifies a symbol that is used in the current module but is defined in another
module. The assembler marks the symbol as an undefined external symbol and enters it in the object
symbol table so the linker can resolve its definition. The .ref directive forces the linker to resolve a
symbol reference.

• The .symdepend directive creates an artificial reference from the section defining the source symbol
name to the destination symbol. The .symdepend directive prevents the linker from removing the
section containing the destination symbol if the source symbol section is included in the output module.

• The .weak directive identifies a symbol that is used in the current module but is defined in another
module. It is equivalent to the .ref directive, except that the reference has weak linkage.

75SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives That Enable Conditional Assembly www.ti.com

4.7 Directives That Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble
conditional blocks of code:

• The .if/.elseif/.else/.endif directives tell the assembler to conditionally assemble a block of code
according to the evaluation of an expression.
.if well-defined expression marks the beginning of a conditional block and assembles code

if the .if well-defined expression is true.
[.elseif well-defined expression] marks a block of code to be assembled if the .if well-defined

expression is false and the .elseif condition is true.
.else marks a block of code to be assembled if the .if well-defined

expression is false and any .elseif conditions are false.
.endif marks the end of a conditional block and terminates the block.

• The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code
according to the evaluation of an expression.
.loop [well-defined expression] marks the beginning of a repeatable block of code. The optional

expression evaluates to the loop count.
.break [well-defined expression] tells the assembler to assemble repeatedly when the .break

well-defined expression is false and to go to the code
immediately after .endloop when the expression is true or
omitted.

.endloop marks the end of a repeatable block.
The assembler supports several relational operators that are useful for conditional expressions. For more
information about relational operators, see Section 3.10.4.

4.8 Directives That Define Union or Structure Types

These directives set up specialized types for later use with the .tag directive, allowing you to use symbolic
names to refer to portions of a complex object. The types created are analogous to the struct and union
types of the C language.

The .struct, .union, .cstruct, and .cunion directives group related data into an aggregate structure which is
more easily accessed. These directives do not allocate space for any object. Objects must be separately
allocated, and the .tag directive must be used to assign the type to the object.

COORDT .struct ; structure tag definition
X .byte ;
Y .byte
T_LEN .endstruct

COORD .tag COORDT ; declare COORD (coordinate)
.bss COORD, T_LEN ; actual memory allocation

LDB *+B14(COORD.Y), A2 ; move member Y of structure
; COORD into register A2

The .cstruct and .cunion directives guarantee that the data structure will have the same alignment and
padding as if the structure were defined in analogous C code. This allows structures to be shared between
C and assembly code. See Chapter 12. For .struct and .union, element offset calculation is left up to the
assembler, so the layout may be different than .cstruct and .cunion.

76 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives That Define Enumerated Types

4.9 Directives That Define Enumerated Types

These directives set up specialized types for later use in expressions allowing you to use symbolic names
to refer to compile-time constants. The types created are analogous to the enum type of the C language.
This allows enumerated types to be shared between C and assembly code. See Chapter 12.

See Section 12.2.10 for an example of using .enum.

4.10 Directives That Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

• The .asg directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols can be redefined.
.asg "10, 20, 30, 40", coefficients

; Assign string to substitution symbol.
.byte coefficients

; Place the symbol values 10, 20, 30, and 40
; into consecutive bytes in current section.

• The .eval directive evaluates a well-defined expression, translates the results into a character string,
and assigns the character string to a substitution symbol. This directive is most useful for manipulating
counters:
.asg 1 , x ; x = 1
.loop ; Begin conditional loop.
.byte x*10h ; Store value into current section.
.break x = 4 ; Break loop if x = 4.
.eval x+1, x ; Increment x by 1.
.endloop ; End conditional loop.

• The .define directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .define cannot be redefined.

• The .label directive defines a special symbol that refers to the load-time address within the current
section. This is useful when a section loads at one address but runs at a different address. For
example, you may want to load a block of performance-critical code into slower off-chip memory to
save space and move the code to high-speed on-chip memory to run. See the .label topic for an
example using a load-time address label.

• The .set and .equ directives set a constant value to a symbol. The symbol is stored in the symbol table
and cannot be redefined; for example:
bval .set 0100h ; Set bval = 0100h

.long bval, bval*2, bval+12
; Store the values 0100h, 0200h, and 010Ch
; into consecutive words in current section.

The .set and .equ directives produce no object code. The two directives are identical and can be used
interchangeably.

• The .unasg directive turns off substitution symbol assignment made with .asg.

• The .undefine directive turns off substitution symbol assignment made with .define.

• The .var directive allows you to use substitution symbols as local variables within a macro.

77SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Miscellaneous Directives www.ti.com

4.11 Miscellaneous Directives

These directives enable miscellaneous functions or features:

• The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with
the compiler --symdebug:dwarf (-g) option to generate debug information for assembly functions.

• The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C
headers containing declarations and prototypes between C and assembly code.

• The .end directive terminates assembly. If you use the .end directive, it should be the last source
statement of a program. This directive has the same effect as an end-of-file character.

• The .group, .gmember, and .endgroup directives define a common data section for member of an
ELF group section.

• The .import, .export, .hidden, and .protected directives set the dynamic visibility of a global symbol
for ELF only. See Section 7.12 for an explanation of symbol visibility

• The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a
decimal digit, or of the form NAME?, where you specify NAME. They are defined when they appear in
the label field. Local labels are temporary labels that can be used as operands for jump instructions.
The .newblock directive limits the scope of local labels by resetting them after they are used. See
Section 3.9.2 for information on local labels.

• The .nocmp directive for C6400+, C6740, and C6600 instructs the tools to not utilize 16-bit instructions
for the section .nocmp appears in.

• The .noremark directive begins a block of code in which the assembler suppresses the specified
assembler remark. A remark is an informational assembler message that is less severe than a
warning. The .remark directive re-enables the remark(s) previously suppressed by .noremark.

These three directives enable you to define your own error and warning messages:

• The .emsg directive sends error messages to the standard output device. The .emsg directive
generates errors in the same manner as the assembler, incrementing the error count and preventing
the assembler from producing an object file.

• The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg
directive functions in the same manner as the .emsg and .wmsg directives but does not set the error
count or the warning count. It does not affect the creation of the object file.

• The .wmsg directive sends warning messages to the standard output device. The .wmsg directive
functions in the same manner as the .emsg directive but increments the warning count rather than the
error count. It does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 5.7.

78 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

4.12 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one
directive per topic. Related directives (such as .if/.else/.endif), however, are presented together in one
topic.

.align Align SPC on the Next Boundary

Syntax .align [size in bytes]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in bytes parameter. The size can be any power of 2, although
only certain values are useful for alignment. An operand of 1 aligns the SPC on the next
byte boundary, and this is the default if no size in bytes is given. The assembler
assembles words containing null values (0) up to the next size in bytes boundary:

1 aligns SPC to byte boundary
2 aligns SPC to halfword boundary
4 aligns SPC to word boundary
8 aligns SPC to doubleword boundary
128 aligns SPC to page boundary

Using the .align directive has two effects:

• The assembler aligns the SPC on an x-byte boundary within the current section.

• The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 8, and a default
.align.

1 00000000 00000004 .byte 4
2 .align 2
3 00000002 00000045 .string "Errorcnt"
00000003 00000072
00000004 00000072
00000005 0000006F
00000006 00000072
00000007 00000063
00000008 0000006E
00000009 00000074

4 .align
5 00000008 0003746E .field 3,3
6 00000008 002B746E .field 5,4
7 .align 2
8 0000000c 00000003 .field 3,3
9 .align 8

10 00000010 00000005 .field 5,4
11 .align
12 00000011 00000004 .byte 4

79SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.asg/.define/.eval Assign a Substitution Symbol

Syntax .asg "character string" ,substitution symbol

.define "character string" ,substitution symbol

.eval well-defined expression,substitution symbol

Description The .asg and .define directives assign character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns a
constant value (which cannot be redefined) to a symbol, .asg assigns a character string
(which can be redefined) to a substitution symbol.

• The assembler assigns the character string to the substitution symbol.

• The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

The .define directive functions in the same manner as the .asg directive, except that
.define disallows creation of a substitution symbol that has the same name as a register
symbol or mnemonic. It does not create a new symbol name space in the assembler,
rather it uses the existing substitution symbol name space. The .define directive is used
to prevent corruption of the assembly environment when converting C/C++ headers. See
Chapter 12 for more information about using C/C++ headers in assembly source.

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the well-defined expression and
assigns the string value of the result to the substitution symbol. The .eval directive is
especially useful as a counter in .loop/.endloop blocks.

• The well-defined expression is an alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an
absolute.

• The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

See the .unasg/.undefine topic for information on turning off a substitution symbol.

80 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

Example This example shows how .asg and .eval can be used.
1 .sslist ; show expanded substitution symbols
2
3 .asg *+B14(100), GLOB100
4 .asg *+B15(4), ARG0
5
6 00000000 003B22E4 LDW GLOB100,A0

LDW *+B14(100),A0
7 00000004 00BC22E4 LDW ARG0,A1

LDW *+B15(4),A1
8 00000008 00006000 NOP 4
9 0000000c 010401E0 ADD A0,A1,A2

10
11 .asg 0,x
12 .loop 5
13 .word 100*x
14 .eval x+1,x
15 .endloop

1 00000010 00000000 .word 100*x
.word 100*0
1 .eval x+1,x
.eval 0+1,x
1 00000014 00000064 .word 100*x
.word 100*1
1 .eval x+1,x
.eval 1+1,x
1 00000018 000000C8 .word 100*x
.word 100*2
1 .eval x+1,x
.eval 2+1,x
1 0000001c 0000012C .word 100*x
.word 100*3
1 .eval x+1,x
.eval 3+1,x
1 00000020 00000190 .word 100*x
.word 100*4
1 .eval x+1,x
.eval 4+1,x

81SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.asmfunc/.endasmfunc Mark Function Boundaries

Syntax symbol .asmfunc [stack_usage(num)]

.endasmfunc

Description The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code
sections to be debugged in the same manner as C/C++ functions.

You should not use the same directives generated by the compiler (see Appendix A) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.

The .asmfunc and .endasmfunc directives cannot be used when invoking the compiler
with the backwards-compatibility --symdebug:coff option. This option instructs the
compiler to use the obsolete COFF symbolic debugging format, which does not support
these directives.

The symbol is a label that must appear in the label field.

The .asmfunc directive has an optional parameter, stack_usage, which sets the stack to
num bytes.

Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:

$ filename : beginning source line : ending source line $

Example In this example the assembly source generates debug information for the user_func
section.

1 00000000 .sect ".text"
2 .global userfunc
3 .global _printf
4
5 userfunc: .asmfunc stack_usage(16)
6 00000000 00000010! CALL .S1 _printf
7 00000004 01BC94F6 STW .D2T2 B3,*B15--(16)
8 00000008 01800E2A' MVKL .S2 RL0,B3
9 0000000c 01800028+ MVKL .S1 SL1+0,A3

10 00000010 01800068+ MVKH .S1 SL1+0,A3
11
12 00000014 01BC22F5 STW .D2T1 A3,*+B15(4)
13 00000018 0180006A' || MVKH .S2 RL0,B3
14
15 0000001c 01BC92E6 RL0: LDW .D2T2 *++B15(16),B3
16 00000020 020008C0 ZERO .D1 A4
17 00000024 00004000 NOP 3
18 00000028 000C0362 RET .S2 B3
19 0000002c 00008000 NOP 5
20 .endasmfunc
21
22 00000000 .sect ".const"
23 00000000 00000048 SL1: .string "Hello World!",10,0

00000001 00000065
00000002 0000006C
00000003 0000006C
00000004 0000006F
00000005 00000020
00000006 00000057
00000007 0000006F
00000008 00000072
00000009 0000006C
0000000a 00000064
0000000b 00000021
0000000c 0000000A

82 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

0000000d 00000000

83SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.bss Reserve Space in the .bss Section

Syntax .bss symbol,size in bytes[, alignment[, bank offset]]

Description The .bss directive reserves space for variables in the .bss section. This directive is
usually used to allocate space in RAM.

• The symbol is a required parameter. It defines a label that points to the first location
reserved by the directive. The symbol name must correspond to the variable that you
are reserving space for.

• The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the .bss section. There is no default size.

• The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. This boundary indicates the size of the slot
in bytes and must be set to a power of 2. If the SPC is aligned to the specified
boundary, it is not incremented.

• The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

For more information about sections, see Chapter 2.

Example In this example, the .bss directive allocates space for a variable, array. The symbol array
points to 100 bytes of uninitialized space (at .bss SPC = 0). Symbols declared with the
.bss directive can be referenced in the same manner as other symbols and can also be
declared global.

1 ***
2 ** Start assembling into .text section. **
3 ***
4 00000000 .text
5 00000000 008001A0 MV A0,A1
6
7 ***
8 ** Allocate 100 bytes in .bss. **
9 ***

10 00000000 .bss array,100
11
12 ***
13 ** Still in .text **
14 ***
15 00000004 010401A0 MV A1,A2
16
17 ***
18 ** Declare external .bss symbol **
19 ***
20 .global array

84 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.byte/.char Initialize Byte

Syntax .byte value1[, ... , valuen]

.char value1[, ... , valuen]

Description The .byte and .char directives place one or more values into consecutive bytes of the
current section. A value can be one of the following:

• An expression that the assembler evaluates and treats as an 8-bit signed number

• A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The first byte occupies the eight least significant bits of a full 32-bit word. The second
byte occupies bits eight through 15 while the third byte occupies bits 16 through 23. The
assembler truncates values greater than eight bits.

If you use a label, it points to the location of the first byte that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag
topic.

Example In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive bytes in
memory with .byte. Also, 8-bit values (8, -3, def, and b) are placed into consecutive
bytes in memory with .char. The label STRX has the value 0h, which is the location of
the first initialized byte. The label STRY has the value 6h, which is the first byte
initialized by the .char directive.

1 00000000 0000000A STRX .byte 10,-1,"abc",'a'
00000001 000000FF
00000002 00000061
00000003 00000062
00000004 00000063
00000005 00000061

2 00000006 00000008 STRY .char 8,-3,"def",'b'

85SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.cdecls Share C Headers Between C and Assembly Code

Syntax Single Line:

.cdecls [options ,] " filename " [, " filename2 " [,...]]

Syntax Multiple Lines:

.cdecls [options]

%{

/*---*/

/* C/C++ code - Typically a list of #includes and a few defines */

/*---*/

%}

Description The .cdecls directive allows programmers in mixed assembly and C/C++ environments
to share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations cause
suitable assembly to be generated automatically, allowing you to reference the C/C++
constructs in assembly code; such as calling functions, allocating space, and accessing
structure members; using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (non-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how the
.cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).
CPP Treat the code in the .cdecls block as C++ source code. This is the

opposite of the C option.
NOLIST Do not include the converted assembly code in any listing file generated

for the containing assembly file (default).
LIST Include the converted assembly code in any listing file generated for the

containing assembly file. This is the opposite of the NOLIST option.
NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot

be converted while parsing the .cdecls source block (default).
WARN Generate warnings on STDERR about C/C++ constructs that cannot be

converted while parsing the .cdecls source block. This is the opposite of
the NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %{, up to the closing block indicator %}, is
treated as C/C++ source and processed. Ordinary assembler processing then resumes
on the line following the closing %}.

The text within %{ and %} is passed to the C/C++ compiler to be converted into
assembly language. Much of C language syntax, including function and variable
definitions as well as function-like macros, is not supported and is ignored during the
conversion. However, all of what traditionally appears in C header files is supported,
including function and variable prototypes; structure and union declarations;
non-function-like macros; enumerations; and #define's.

86 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

The resulting assembly language is included in the assembly file at the point of the
.cdecls directive. If the LIST option is used, the converted assembly statements are
printed in the listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included. The
assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is
not inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See Chapter 12 for more information on setting up and using the .cdecls directive with C
header files.

Example In this example, the .cdecls directive is used call the C header.h file.

C header file:
#define WANT_ID 10
#define NAME "John\n"

extern int a_variable;
extern float cvt_integer(int src);

struct myCstruct { int member_a; float member_b; };

enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };

Source file:
.cdecls C,LIST,"myheader.h"

size: .int $sizeof(myCstruct)
aoffset: .int myCstruct.member_a
boffset: .int myCstruct.member_b
okvalue: .int status_enum.OK
failval: .int status_enum.FAILED

.if $$defined(WANT_ID)
id .cstring NAME

.endif

Listing File:

1 .cdecls C,LIST,"myheader.h"
A 1 ; --
A 2 ; Assembly Generated from C/C++ Source Code
A 3 ; --
A 4
A 5 ; =========== MACRO DEFINITIONS ===========
A 6 .define "10",WANT_ID
A 7 .define """John\n""",NAME
A 8
A 9 ; =========== TYPE DEFINITIONS ===========
A 10 status_enum .enum
A 11 00000001 OK .emember 1
A 12 00000100 FAILED .emember 256
A 13 00000000 RUNNING .emember 0
A 14 .endenum
A 15
A 16 myCstruct .struct 0,4

17 ; struct size=(8 bytes|64 bits), alignment=4
A 18 00000000 member_a .field 32

19 ; int member_a - offset 0 bytes, size (4 bytes|32 bits)
A 20 00000004 member_b .field 32

21 ; float member_b - offset 4 bytes, size (4 bytes|32 bits)

87SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

A 22 00000008 .endstruct
23 ; final size=(8 bytes|64 bits)

A 24
A 25 ; =========== EXTERNAL FUNCTIONS ===========
A 26 .global _cvt_integer
A 27
A 28 ; =========== EXTERNAL VARIABLES ===========
A 29 .global _a_variable

2 00000000 00000008 size: .int $sizeof(myCstruct)
3 00000004 00000000 aoffset: .int myCstruct.member_a
4 00000008 00000004 boffset: .int myCstruct.member_b
5 0000000c 00000001 okvalue: .int status_enum.OK
6 00000010 00000100 failval: .int status_enum.FAILED
7 .if $defined(WANT_ID)
8 00000014 0000004A id .cstring NAME
00000015 0000006F
00000016 00000068
00000017 0000006E
00000018 0000000A
00000019 00000000

9 .endif

88 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.clink/.retain Control Whether to Conditionally Leave Section Out of Object Module Output

Syntax .clink["section name"]

.retain["section name"]

Description The .clink directive enables conditional linking by telling the linker to leave a section out
of the final object module output of the linker if there are no references found to any
symbol in that section. The .clink directive can be applied to initialized or uninitialized
sections.

The section name identifies the section. If the directive is used without a section name, it
applies to the current initialized section. If the directive is applied to an uninitialized
section, the section name is required. The section name must be enclosed in double
quotes. A section name can contain a subsection name in the form section
name:subsection name.

The .clink directive is useful only with the COFF object file format. Under the COFF ABI
model, the linker assumes that all sections are ineligible for removal via conditional
linking by default. If you want to make a section eligible for removal, you must apply a
.clink directive to it. In contrast, under the ELF EABI model, the linker assumes that all
sections are eligible for removal via conditional linking. Therefore, the .clink directive has
no effect under EABI.

A section in which the entry point of a C program is defined cannot be marked as a
conditionally linked section.

The .retain directive indicates that the current or specified section is not eligible for
removal via conditional linking. You can also override conditional linking for a given
section with the --retain linker option. You can disable conditional linking entirely with the
--unused_section_elimination=off linker option.

Since under the ELF EABI model the linker assumes that all sections are eligible for
removal via conditional linking by default, the .retain directive becomes useful for
overriding the default conditional linking behavior for those sections that you want to
keep included in the link, even if the section is not referenced by any other section in the
link. For example, you could apply a .retain directive to an interrupt function that you
have written in assembly language, but which is not referenced from any normal entry
point in the application.

Under the COFF ABI model, the linker assumes that all sections are not eligible for
removal via conditional linking by default. So under the COFF ABI mode, the .retain
directive does not have any real effect on the section.

89SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

Example 1 Here's an example of an interrupt function that has a .retain directive applied to it.
.sect ".text:interrupts:retain"
.retain
.global _int_func1

;**
;* FUNCTION NAME: int_func1 *
;**
_int_func1:

STW .D2 FP,*SP++(-88) ; [B_D] |31|
STW .D2 B3,*SP(80) ; [B_D] |31|
STW .D2 A4,*SP(24) ; [B_D] |31|
STW .D2 B2,*SP(84) ; [B_D] |31|
STW .D2 B9,*SP(76) ; [B_D] |31|
STW .D2 B8,*SP(72) ; [B_D] |31|
STW .D2 B7,*SP(68) ; [B_D] |31|
STW .D2 B6,*SP(64) ; [B_D] |31|
STW .D2 B5,*SP(60) ; [B_D] |31|
STW .D2 B4,*SP(56) ; [B_D] |31|
STW .D2 B1,*SP(52) ; [B_D] |31|
STW .D2 B0,*SP(48) ; [B_D] |31|
STW .D2 A7,*SP(36) ; [B_D] |31|
STW .D2 A6,*SP(32) ; [B_D] |31|
STW .D2 A5,*SP(28) ; [B_D] |31|

CALL .S1 _foo ; [A_S] |32|
|| STW .D2 A8,*SP(40) ; [B_D] |31|

...

STW .D2 B4,*+DP(_a_i) ; [B_D] |33|

RET .S2 IRP ; [B_Sb] |34|
|| LDW .D2 *SP(56),B4 ; [B_D] |34|

LDW .D2 *++SP(88),FP ; [B_D] |34|
NOP 4 ; [A_L]

Example 2 In this example, the Vars and Counts sections are set for conditional linking.
1 00000000 .sect "Vars"
2 .clink
3 ; Vars section is conditionally linked
4
5 00000000 0000001A X: .word 01Ah
6 00000004 0000001A Y: .word 01Ah
7 00000008 0000001A Z: .word 01Ah
8 00000000 .sect "Counts"
9 .clink

10 ; Counts section is conditionally linked
11
12 00000000 0000001A XCount: .word 01Ah
13 00000004 0000001A YCount: .word 01Ah
14 00000008 0000001A ZCount: .word 01Ah
15 00000000 .text
16 ; By default, .text is unconditionally linked
17
18 00000000 00B802C4 LDH *B14,A1
19 00000004 00000028+ MVKL X,A0
20 00000008 00000068+ MVKH X,A0
21 ; These references to symbol X cause the Vars
22 ; section to be linked into the object output
23 0000000c 00040AF8 CMPLT A0,A1,A0

90 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.copy/.include Copy Source File

Syntax .copy " filename"

.include " filename"

Description The .copy and .include directives tell the assembler to read source statements from a
different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:

1. Stops assembling statements in the current source file

2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It is enclosed in double
quotes and must follow operating system conventions.

You can specify a full pathname (for example, /320tools/file1.asm). If you do not specify
a full pathname, the assembler searches for the file in:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the C6X_A_DIR environment variable

4. Any directories specified by the C6X_C_DIR environment variable

For more information about the --include_path option and C6X_A_DIR, see Section 3.5.
For more information about C6X_C_DIR, see the TMS320C6000 Optimizing Compiler
User's Guide.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. A indicates the first copied file, B indicates a second
copied file, etc.

Example 1 In this example, the .copy directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)

.space 29 ** In byte.asm ** In word.asm

.copy "byte.asm" .byte 32,1+ 'A' .word 0ABCDh, 56q
** Back in original file .copy "word.asm"

.string "done" ** Back in byte.asm
.byte 67h + 3q

91SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

Listing file:
1 00000000 .space 29
2 .copy "byte.asm"

A 1 ** In byte.asm
A 2 0000001d 00000020 .byte 32,1+ 'A'

0000001e 00000042
A 3 .copy "word.asm"
B 1 ** In word.asm
B 2 00000020 0000ABCD .word 0ABCDh, 56q

00000024 0000002E
A 4 ** Back in byte.asm
A 5 00000028 0000006A .byte 67h + 3q

3
4 ** Back in original file
5 00000029 00000064 .string "done"
0000002a 0000006F
0000002b 0000006E
0000002c 00000065

Example 2 In this example, the .include directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the
listing file.

include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)

.space 29 ** In byte2.asm ** In word2.asm

.include "byte2.asm" .byte 32,1+ 'A' .word 0ABCDh, 56q
** Back in original file .include "word2.asm"

.string "done" ** Back in byte2.asm
.byte 67h + 3q

Listing file:
1 00000000 .space 29
2 .include "byte2.asm"
3
4 ** Back in original file
5 00000029 00000064 .string "done"
0000002a 0000006F
0000002b 0000006E
0000002c 00000065

92 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.cstruct/.cunion/.endstruct/.endunion/.tag Declare C Structure Type

Syntax [stag] .cstruct|.cunion [expr]

[mem0] element [expr0]
[mem1] element [expr1]

. . .
. . .
. . .

[memn] .tag stag [exprn]

[memN] element [exprN]

[size] .endstruct|.endunion

label .tag stag

Description The .cstruct and .cunion directives have been added to support ease of sharing of
common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler
for C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

• The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

• The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. A .tag directive
is a special case because stag must be used (as in the definition of stag).

• The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

• The exprn/N is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

• The memn/N is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

• The size is an optional label for the total size of the structure.

Example This example illustrates a structure in C that will be accessed in assembly code.

93SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

typedef struct STRUCT1
; { int i0; /* offset 0 */
; short s0; /* offset 4 */
; } struct1; /* size 8, alignment 4 */
;
; typedef struct STRUCT2
; { struct1 st1; /* offset 0 */
; short s1; /* offset 8 */
; } struct2; /* size 12, alignment 4 */
;
; The structure will get the following offsets once the C compiler lays out the structure
; elements according to the C standard rules:
;
; offsetof(struct1, i0) = 0
; offsetof(struct1, s0) = 4
; sizeof(struct1) = 8
;
; offsetof(struct2, s1) = 0
; offsetof(struct2, i1) = 8
; sizeof(struct2) = 12
;
; Attempts to replicate this structure in assembly using the .struct/.union directives will not
; create the correct offsets because the assembler tries to use the most compact arrangement:

struct1 .struct
i0 .int ; bytes 0-3
s0 .short ; bytes 4-5
struct1len .endstruct ; size 6, alignment 4

struct2 .struct
st1 .tag struct1 ; bytes 0-5
s1 .short ; bytes 6-7
endstruct2 .endstruct ; size 8, alignment 4

.sect "data1"

.word struct1.i0 ; 0

.word struct1.s0 ; 4

.word struct1len ; 6

.sect "data2"

.word struct2.st1 ; 0

.word struct2.s1 ; 6

.word endstruct2 ; 8
;
; The .cstruct/.cunion directives calculate the offsets in the same manner as the C compiler.
; The resulting assembly structure can be used to access the elements of the C structure.
; Compare the difference in the offsets of those structures defined via .struct above and the
; offsets for the C code.

cstruct1 .cstruct
i0 .int ; bytes 0-3
s0 .short ; bytes 4-5
cstruct1len .endstruct ; size 8, alignment 4

cstruct2 .cstruct
st1 .tag cstruct1 ; bytes 0-7
s1 .short ; bytes 8-9
cendstruct2 .endstruct ; size 12, alignment 4

.sect "data3"

.word cstruct1.i0, struct1.i0 ; 0

.word cstruct1.s0, struct1.s0 ; 4

.word cstruct1len, struct1len ; 8

.sect "data4"

.word cstruct2.st1, struct2.st1 ; 0

94 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.word cstruct2.s1, struct2.s1 ; 8

.word cendstruct2, endstruct2 ; 12

95SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.data Assemble Into the .data Section

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into the .data
section; .data becomes the current section. The .data section is normally used to contain
tables of data or preinitialized variables.

For more information about sections, see Chapter 2.

Example In this example, code is assembled into the .data and .text sections.
1 ***
2 ** Reserve space in .data **
3 ***
4 00000000 .data
5 00000000 .space 0CCh
6
7 ***
8 ** Assemble into .text **
9 ***

10 00000000 .text
11 00000000 00800358 ABS A0,A1
12
13 ***
14 ** Assemble into .data **
15 ***
16 000000cc table: .data
17 000000cc FFFFFFFF .word -1
18 000000d0 000000FF .byte 0FFh
19
20 ***
21 ** Assemble into .text **
22 ***
23 00000004 .text
24 00000004 008001A0 MV A0,A1
25
26 ***
27 ** Resume assembling into the .data section **
28 ***
29 000000d1 .data
30 000000d4 00000000 coeff .word 00h,0ah,0bh

000000d8 0000000A
000000dc 0000000B

96 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

S E E E E E E E E E E E M

31 20 0

M M

031

Legend: S = sign
E = exponent (11-bit biased)
M = mantissa (52-bit fraction)

www.ti.com Directives Reference

.double Initialize Double-Precision Floating-Point Value

Syntax .double value1 [, ... , valuen]

Description The .double directive places the IEEE double-precision floating-point representation of
one or more floating-point values into the current section. Each value must be a
floating-point constant or a symbol that has been equated to a floating-point constant.
Each constant is converted to a floating-point value in IEEE double-precision 64-bit
format. Double-precision floating point constants are aligned to a double word boundary.

The 64-bit value is stored in the format shown in Figure 4-5.

Figure 4-5. Double-Precision Floating-Point Format

When you use .double in a .struct/.endstruct sequence, .double defines a member's size;
it does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example This example shows the .double directive.
1 00000000 2C280291 .double -2.0e25
00000004 C5308B2A

2 00000008 00000000 .double 6
0000000c 40180000

3 00000010 00000000 .double 456
00000014 407C8000

97SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.drlist/.drnolist Control Listing of Directives

Syntax .drlist

.drnolist

Description Two directives enable you to control the printing of assembler directives to the listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the listing
file. The .drnolist directive has no affect within macros.

• .asg • .fcnolist • .ssnolist

• .break • .mlist • .var

• .emsg • .mmsg • .wmsg

• .eval • .mnolist

• .fclist • .sslist

By default, the assembler acts as if the .drlist directive had been specified.

Example This example shows how .drnolist inhibits the listing of the specified directives.

Source file:
.length 65
.width 85
.asg 0, x
.loop 2
.eval x+1, x
.endloop

.drnolist

.length 55

.width 95

.asg 1, x

.loop 3

.eval x+1, x

.endloop

Listing file:
3 .asg 0, x
4 .loop 2
5 .eval x+1, x
6 .endloop

1 .eval 0+1, x
1 .eval 1+1, x

7
8 .drnolist

12 .loop 3
13 .eval x+1, x
14 .endloop

98 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.elfsym ELF Symbol Information

Syntax .elfsym name, SYM_SIZE(size)

Description The .elfsym directive provides additional information for symbols in the ELF format. This
directive is designed to convey different types of information, so the type, data pair is
used to represent each type. Currently, this directive only supports the SYM_SIZE type.

SYM_SIZE indicates the allocation size (in bytes) of the symbol indicated by name.

Example This example shows the use of the ELF symbol information directive.
.sect ".examp"
.alignment 4
.elfsym ex_sym, SYM_SIZE(4)

.ex_sym:

.emsg/.mmsg/.wmsg Define Messages

Syntax .emsg string

.mmsg string

.wmsg string

Description These directives allow you to define your own error and warning messages. When you
use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.

The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.

The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the
error count, however. It does not prevent the assembler from producing an object file.

Example In this example, the message ERROR -- MISSING PARAMETER is sent to the standard
output device.

Source file:
.global PARAM

MSG_EX .macro parm1
.if $symlen(parm1) = 0
.emsg "ERROR -- MISSING PARAMETER"
.else
MVK parm1, A1
.endif
.endm

MSG_EX PARAM

MSG_EX

Listing file:
1 .global PARAM
2 MSG_EX .macro parm1
3 .if $symlen(parm1) = 0
4 .emsg "ERROR -- MISSING PARAMETER"
5 .else
6 MVK parm1, A1

99SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

7 .endif
8 .endm
9

10 00000000 MSG_EX PARAM
1 .if $symlen(parm1) = 0
1 .emsg "ERROR -- MISSING PARAMETER"
1 .else
1 00000000 00800028! MVK PARAM, A1
1 .endif

11
12 00000004 MSG_EX

1 .if $symlen(parm1) = 0
1 .emsg "ERROR -- MISSING PARAMETER"

***** USER ERROR ***** - : ERROR -- MISSING PARAMETER
1 .else
1 MVK parm1, A1
1 .endif

1 Error, No Warnings

In addition, the following messages are sent to standard output by the assembler:
"t.asm", ERROR! at line 10: [***** USER ERROR ***** -] ERROR -- MISSING
PARAMETER

.emsg "ERROR -- MISSING PARAMETER"

1 Assembly Error, No Assembly Warnings
Errors in Source - Assembler Aborted

100 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.end End Assembly

Syntax .end

Description The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.

This directive has the same effect as an end-of-file character. You can use .end when
you are debugging and you want to stop assembling at a specific point in your code.

Ending a Macro

NOTE: Do not use the .end directive to terminate a macro; use the .endm
macro directive instead.

Example This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.

Source file:
start: .text

ZERO A0
ZERO A1
ZERO A3
.end
ZERO A4

Listing file:
1 00000000 start: .text
2 00000000 000005E0 ZERO A0
3 00000004 008425E0 ZERO A1
4 00000008 018C65E0 ZERO A3
5 .end

101SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.fclist/.fcnolist Control Listing of False Conditional Blocks

Syntax .fclist

.fcnolist

Description Two directives enable you to control the listing of false conditional blocks:

The .fclist directive allows the listing of false conditional blocks (conditional blocks that
do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not
appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist directive
had been used.

Example This example shows the assembly language and listing files for code with and without
the conditional blocks listed.

Source file:
a .set 0
b .set 1

.fclist ; list false conditional blocks

.if a
MVK 5,A0
.else
MVK 0,A0
.endif
.fcnolist ; do not list false conditional blocks
.if a
MVK 5,A0
.else
MVK 0,A0
.endif

Listing file:
1 00000000 a .set 0
2 00000001 b .set 1
3 .fclist ; list false conditional blocks
4 .if a
5 MVK 5,A0
6 .else
7 00000000 00000028 MVK 0,A0
8 .endif
9 .fcnolist ; do not list false conditional blocks

13 00000004 00000028 MVK 0,A0

102 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.field Initialize Field

Syntax .field value[, size in bits]

Description The .field directive initializes a multiple-bit field within a single word (32 bits) of memory.
This directive has two operands:

• The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

• The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the field. If you do not specify a size, the assembler assumes
the size is 32 bits. If you specify a value that cannot fit in size in bits, the assembler
truncates the value and issues a warning message. For example, .field 3,1 causes
the assembler to truncate the value 3 to 1; the assembler also prints the message:
"t.asm", WARNING! at line 1: [W0001] Value truncated to 1

.field 3, 1

Successive .field directives pack values into the specified number of bits starting at the
current 32-bit slot. Fields are packed starting at the least significant bit (bit 0), moving
toward the most significant bit (bit 31) as more fields are added. If the assembler
encounters a field size that does not fit in the current 32-bit word, it fills the remaining
bits of the current byte with 0s, increments the SPC to the next word boundary, and
begins packing fields into the next word.

You can use the .align directive to force the next .field directive to begin packing into a
new word.

If you use a label, it points to the byte that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example This example shows how fields are packed into a word. The SPC does not change until
a word is filled and the next word is begun. Figure 4-6 shows how the directives in this
example affect memory.

1 ************************************
2 ** Initialize a 24-bit field. **
3 ************************************
4 00000000 00BBCCDD .field 0BBCCDDh, 24
5
6 ************************************
7 ** Initialize a 5-bit field **
8 ************************************
9 00000000 0ABBCCDD .field 0Ah, 5

10
11 ***********************************
12 ** Initialize a 4-bit field **
13 ** in a new word. **
14 ************************************
15 00000004 0000000C .field 0Ch, 4
16
17 ************************************
18 ** Initialize a 3-bit field **
19 ************************************
20 00000004 0000001C x: .field 01h, 3
21
22 ************************************
23 ** Initialize a 32-bit field **
24 ** relocatable field in the **
25 ** next word **
26 ************************************
27 00000008 00000004' .field x

103SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

Figure 4-6. The .field Directive

104 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

S E E E E E E E E M

31 23 0

Legend: S = sign (1 bit)
E = exponent (8-bit biased)
M = mantissa (23-bit fraction)

value = (-1)S
x (1.0 + mantissa) x (2)

exponent-127

www.ti.com Directives Reference

.float Initialize Single-Precision Floating-Point Value

Syntax .float value[, ... , valuen]

Description The .float directive places the IEEE single-precision floating-point representation of a
single floating-point constant into a word in the current section. The value must be a
floating-point constant or a symbol that has been equated to a floating-point constant.
Each constant is converted to a floating-point value in IEEE single-precision 32-bit
format.

The 32-bit value is stored exponent byte first, most significant byte of fraction second,
and least significant byte of fraction third, in the format shown in Figure 4-7.

Figure 4-7. Single-Precision Floating-Point Format

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example Following are examples of the .float directive:
1 00000000 E9045951 .float -1.0e25
2 00000004 40400000 .float 3
3 00000008 42F60000 .float 123

105SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.global/.def/.ref Identify Global Symbols

Syntax .global symbol1[, ... , symboln]

.def symbol1[, ... , symboln]

.ref symbol1[, ... , symboln]

Description Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. As with all symbols, if a
global symbol is defined more than once, the linker issues a multiple-definition error. The
.ref directive always creates a symbol table entry for a symbol, whether the module uses
the symbol or not; .global, however, creates an entry only if the module actually uses the
symbol.

A symbol can be declared global for either of two reasons:

• If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an
unresolved reference error. At link time, the linker looks for the symbol's definition in
other modules.

• If the symbol is defined in the current module, the .global or .def directive declares
that the symbol and its definition can be used externally by other modules. These
types of references are resolved at link time.

Example This example shows four files. The file1.lst and file2.lst refer to each other for all symbols
used; file3.lst and file4.lst are similarly related.

The file1.lst and file3.lst files are equivalent. Both files define the symbol INIT and
make it available to other modules; both files use the external symbols X, Y, and Z. Also,
file1.lst uses the .global directive to identify these global symbols; file3.lst uses .ref and
.def to identify the symbols.

The file2.lst and file4.lst files are equivalent. Both files define the symbols X, Y, and Z
and make them available to other modules; both files use the external symbol INIT. Also,
file2.lst uses the .global directive to identify these global symbols; file4.lst uses .ref and
.def to identify the symbols.

file1.lst
1 ; Global symbol defined in this file
2 .global INIT
3 ; Global symbols defined in file2.lst
4 .global X, Y, Z
5 00000000 INIT:
6 00000000 00902058 ADD.L1 0x01,A4,A1
7 00000004 00000000! .word X
8 ; .
9 ; .

10 ; .
11 .end

106 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

file2.lst
1 ; Global symbols defined in this file
2 .global X, Y, Z
3 ; Global symbol defined in file1.lst
4 .global INIT
5 00000001 X: .set 1
6 00000002 Y: .set 2
7 00000003 Z: .set 3
8 00000000 00000000! .word INIT
9 ; .

10 ; .
11 ; .
12 .end

file3.lst
1 ; Global symbol defined in this file
2 .def INIT
3 ; Global symbols defined in file4.lst
4 .ref X, Y, Z
5 00000000 INIT:
6 00000000 00902058 ADD.L1 0x01,A4,A1
7 00000004 00000000! .word X
8 ; .
9 ; .

10 ; .
11 .end

file4.lst
1 ; Global symbols defined in this file
2 .def X, Y, Z
3 ; Global symbol defined in file3.lst
4 .ref INIT
5 00000001 X: .set 1
6 00000002 Y: .set 2
7 00000003 Z: .set 3
8 00000000 00000000! .word INIT
9 ; .

10 ; .
11 ; .
12 .end

.group/.gmember/.endgroup Define Common Data Section

Syntax .group group section name group type

.gmember section name

.endgroup

Description Three directives instruct the assembler to make certain sections members of an ELF
group section (see ELF specification for more information on group sections).

The .group directive begins the group declaration. The group section name designates
the name of the group section. The group type designates the type of the group. The
following types are supported:

0x0 Regular ELF group
0x1 COMDAT ELF group

107SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

The .gmember directive designates section name as a member of the group.

The .endgroup directive ends the group declaration.

108 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.half/.short/.uhalf/.ushort Initialize 16-Bit Integers

Syntax .half value1[, ... , valuen]

.short value1[, ... , valuen]

.uhalf value1[, ... , valuen]

.ushort value1[, ... , valuen]

Description The .half, .uhalf, .short, and .ushort directives place one or more values into
consecutive halfwords in the current section. Each value is placed in a 2-byte slot by
itself. A value can be either:

• An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

• A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with 0s.

The assembler truncates values greater than 16 bits.

If you use a label with .half, .short, .uhalf, or .ushort; it points to the location where the
assembler places the first byte.

These directives perform a halfword (16-bit) alignment before data is written to the
section. This guarantees that data resides on a 16-bit boundary.

When you use .half, .short, .uhalf, or .ushort in a .struct/.endstruct sequence, they define
a member's size; they do not initialize memory. For more information, see the
.struct/.endstruct/.tag topic.

Example In this example, .half is used to place 16-bit values (10, -1, abc, and a) into consecutive
halfwords in memory; .short is used to place 16-bit values (8, -3, def, and b) into
consecutive halfwords in memory. The label STRN has the value 100ch, which is the
location of the first initialized halfword for .short.

1 00000000 .space 100h * 16
2 00001000 0000000A .half 10, -1, "abc", 'a'
00001002 0000FFFF
00001004 00000061
00001006 00000062
00001008 00000063
0000100a 00000061

3 0000100c 00000008 STRN .short 8, -3, "def", 'b'
0000100e 0000FFFD
00001010 00000064
00001012 00000065
00001014 00000066
00001016 00000062

109SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.if/.elseif/.else/.endif Assemble Conditional Blocks

Syntax .if well-defined expression

[.elseif well-defined expression]

[.else]

.endif

Description Four directives provide conditional assembly:

The .if directive marks the beginning of a conditional block. The well-defined expression
is a required parameter.

• If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).

• If the expression evaluates to false (0), the assembler assembles code that follows a
.elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).

The .elseif directive identifies a block of code to be assembled when the .if expression is
false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif
(if no .elseif or .else is present). The .elseif directive is optional in the conditional block,
and more than one .elseif can be used. If an expression is false and there is no .elseif
statement, the assembler continues with the code that follows a .else (if present) or a
.endif.

The .else directive identifies a block of code that the assembler assembles when the .if
expression and all .elseif expressions are false (0). The .else directive is optional in the
conditional block; if an expression is false and there is no .else statement, the assembler
continues with the code that follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly block, and
the .elseif directive can be used more than once within a conditional assembly block.

See Section 3.10.4 for information about relational operators.

Example This example shows conditional assembly:
1 00000001 SYM1 .set 1
2 00000002 SYM2 .set 2
3 00000003 SYM3 .set 3
4 00000004 SYM4 .set 4
5
6 If_4: .if SYM4 = SYM2 * SYM2
7 00000000 00000004 .byte SYM4 ; Equal values
8 .else
9 .byte SYM2 * SYM2 ; Unequal values

10 .endif
11
12 If_5: .if SYM1 <;= 10
13 00000001 0000000A .byte 10 ; Less than / equal
14 .else
15 .byte SYM1 ; Greater than
16 .endif
17
18 If_6: .if SYM3 * SYM2 != SYM4 + SYM2
19 .byte SYM3 * SYM2 ; Unequal value
20 .else
21 00000002 00000008 .byte SYM4 + SYM4 ; Equal values
22 .endif
23
24 If_7: .if SYM1 = SYM2
25 .byte SYM1

110 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

26 .elseif SYM2 + SYM3 = 5
27 00000003 00000005 .byte SYM2 + SYM3
28 .endif

111SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.import/.export/.hidden/.protected Set Dynamic Visibility of Global Symbol

Syntax .import "symbolname"

.export "symbolname"

.hidden "symbolname"

.protected "symbolname"

Description These directives set the dynamic visibility of a global symbol. Each takes a single symbol
name, optionally enclosed in double-quotes.

• The .import directive sets the visibility of symbolname to STV_IMPORT.

• The .export directive sets the visibility of symbolname to STV_EXPORT.

• The .hidden directive sets the visibility of symbolname to STV_HIDDEN.

• The .protected directive sets the visibility of symbolname to STV_PROTECTED.

See Section 7.12 for an explanation of symbol visibility.

Theses directives are commonly used in the context of dynamic linking, for more detail
see the Dynamic Linking wiki site
(http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking).

112 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Linking
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.int/.long/.word/.uint/.uword Initialize 32-Bit Integers

Syntax .int value1[, ... , valuen]

.long value1[, ... , valuen]

.word value1[, ... , valuen]

.uint value1[, ... , valuen]

.uword value1[, ... , valuen]

Description The .int, .uint, .long, .word, and .uword directives place one or more values into
consecutive words in the current section. Each value is placed in a 32-bit word by itself
and is aligned on a word boundary. A value can be either:

• An expression that the assembler evaluates and treats as a 32-bit signed or unsigned
number

• A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 32-bit field,
which is padded with 0s.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.

If you use a label with these directives, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. See the .struct/.endstruct/.tag topic.

Example 1 This example uses the .int directive to initialize words. Notice that the symbol SYMPTR
puts the symbol's address in the object code and generates a relocatable reference
(indicated by the - character appended to the object word).

1 00000000 .space 73h
2 00000000 .bss PAGE, 128
3 00000080 .bss SYMPTR, 3
4 00000074 003C12E4 INST: LDW.D2 *++B15[0],A0
5 00000078 0000000A .int 10, SYMPTR, -1, 35 + 'a', INST
0000007c 00000080-
00000080 FFFFFFFF
00000084 00000084
00000088 00000074'

Example 2 This example initializes two 32-bit fields and defines DAT1 to point to the first location.
The contents of the resulting 32-bit fields are FFFABCDh and 141h.

1 00000000 FFFFABCD DAT1: .long 0FFFFABCDh,'A'+100h
00000004 00000141

Example 3 This example initializes five words. The symbol WordX points to the first word.
1 00000000 00000C80 ;WordX .word 3200,1+'AB',-'AF',0F410h,'A'
00000004 00004242
00000008 FFFFB9BF
0000000c 0000F410
00000010 00000041

113SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.label Create a Load-Time Address Label

Syntax .label symbol

Description The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the linker relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at a
different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address
so that references to the section (such as branches) are correct when the code runs.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of
the code that relocates the section.

Example This example shows the use of a load-time address label.
sect ".examp"

.label examp_load ; load address of section
start: ; run address of section

<code>
finish: ; run address of section end

.label examp_end ; load address of section end

See Section 7.5.5 for more information about assigning run-time and load-time
addresses in the linker.

114 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.length/.width Set Listing Page Size

Syntax .length [page length]

.width [page width]

Description Two directives allow you to control the size of the output listing file.

The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.

• Default length: 60 lines. If you do not use the .length directive or if you use the
.length directive without specifying the page length, the output listing length defaults
to 60 lines.

• Minimum length: 1 line

• Maximum length: 32 767 lines

The .width directive sets the page width of the output listing file. It affects the next line
assembled and the lines following. You can reset the page width with another .width
directive.

• Default width: 132 characters. If you do not use the .width directive or if you use the
.width directive without specifying a page width, the output listing width defaults to
132 characters.

• Minimum width: 80 characters

• Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value, and
object code are counted as part of the width of a line. Comments and other portions of a
source statement that extend beyond the page width are truncated in the listing.

The assembler does not list the .width and .length directives.

Example The following example shows how to change the page length and width.
**
** Page length = 65 lines **
** Page width = 85 characters **
**

.length 65

.width 85

**
** Page length = 55 lines **
** Page width = 100 characters **
**

.length 55

.width 100

115SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.list/.nolist Start/Stop Source Listing

Syntax .list

.nolist

Description Two directives enable you to control the printing of the source listing:

The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.

The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the
listing.

By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke
the assembler by including the --asm_listing option on the command line (see
Section 3.3), the assembler ignores the .list directive.

Example This example shows how the .list and .nolist directives turn the output listing on and off.
The .nolist, the table: .data through .byte lines, and the .list directives do not appear in
the listing file. Also, the line counter is incremented even when source statements are
not listed.

Source file:
.data
.space 0CCh
.text
ABS A0,A1

.nolist

table: .data
.word -1
.byte 0FFh

.list

.text
MV A0,A1
.data

coeff .word 00h,0ah,0bh

Listing file:
1 00000000 .data
2 00000000 .space 0CCh
3 00000000 .text
4 00000000 00800358 ABS A0,A1
5

13
14 00000004 .text
15 00000004 008001A0 MV A0,A1
16 000000d1 .data
17 000000d4 00000000 coeff .word 00h,0ah,0bh

000000d8 0000000A
000000dc 0000000B

116 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.loop/.endloop/.break Assemble Code Block Repeatedly

Syntax .loop [well-defined expression]

.break [well-defined expression]

.endloop

Description Three directives allow you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of loops to be performed). If there is no
well-defined expression, the loop count defaults to 1024, unless the assembler first
encounters a .break directive with an expression that is true (nonzero) or omitted.

The .break directive, along with its expression, is optional. This means that when you
use the .loop construct, you do not have to use the .break construct. The .break directive
terminates a repeatable block of code only if the well-defined expression is true
(nonzero) or omitted, and the assembler breaks the loop and assembles the code after
the .endloop directive. If the expression is false (evaluates to 0), the loop continues.

The .endloop directive terminates a repeatable block of code; it executes when the
.break directive is true (nonzero) or when the number of loops performed equals the loop
count given by .loop.

Example This example illustrates how these directives can be used with the .eval directive. The
code in the first six lines expands to the code immediately following those six lines.

1 .eval 0,x
2 COEF .loop
3 .word x*100
4 .eval x+1, x
5 .break x = 6
6 .endloop

1 00000000 00000000 .word 0*100
1 .eval 0+1, x
1 .break 1 = 6
1 00000004 00000064 .word 1*100
1 .eval 1+1, x
1 .break 2 = 6
1 00000008 000000C8 .word 2*100
1 .eval 2+1, x
1 .break 3 = 6
1 0000000c 0000012C .word 3*100
1 .eval 3+1, x
1 .break 4 = 6
1 00000010 00000190 .word 4*100
1 .eval 4+1, x
1 .break 5 = 6
1 00000014 000001F4 .word 5*100
1 .eval 5+1, x
1 .break 6 = 6

117SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.macro/.endm Define Macro

Syntax macname .macro [parameter1[, ... , parametern]]

model statements or macro directives

.endm

Description The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in an
.include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source
statement's label field.

.macro identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for the
.macro directive.

model statements are instructions or assembler directives that are executed each
time the macro is called.

macro directives are used to control macro expansion.
.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 5.

118 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.map/.clearmap Assign a Variable to a Register

Syntax .map symbol1 / register1 [, symbol2 / register2 , ...]

.clearmap

Description The .map directive is used by the compiler when the input is linear assembly. The
compiler tries to keep your symbolic names for registers defined with .reg by creating
substitution symbols with .map.

The .map directive is similar to .asg, but uses a forward slash instead of a comma; and
allows single quote characters in the symbolic names. For example, this linear assembly
input:

The .clearmap directive is used by the compiler to undefine all current .map substitution
symbols.

See the TMS320C6000 Optimizing Compiler User's Guide for details on using the .map
directive in linear assembly code.

Example The .map directive is similar to .asg, but uses a forward slash instead of a comma; and
allows single quote characters in the symbolic names. For example, this linear assembly
input:

fn: .cproc a, b, c
.reg x, y, z

ADD a, b, z
ADD z, c, z
.return z
.endproc

Becomes this assembly code output:
fn:

.map a/A4

.map b/B4

.map c/A6

.map z/A4

.map z'/A3
RET .S2 B3
ADD .L1X a,b,z'
ADD .L1 z',c,z
NOP 3

119SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.mlib Define Macro Library

Syntax .mlib " filename"

Description The .mlib directive provides the assembler with the filename of a macro library. A macro
library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the C6X_A_DIR environment variable

4. Any directories specified by the C6X_C_DIR environment variable

See Section 3.5 for more information about the --include_path option.

When the assembler encounters a .mlib directive, it opens the library specified by the
filename and creates a table of the library's contents. The assembler enters the names
of the individual library members into the opcode table as library entries. This redefines
any existing opcodes or macros that have the same name. If one of these macros is
called, the assembler extracts the entry from the library and loads it into the macro table.
The assembler expands the library entry in the same way it expands other macros, but it
does not place the source code into the listing. Only macros that are actually called from
the library are extracted, and they are extracted only once.

See Chapter 5 for more information on macros and macro libraries.

Example The code creates a macro library that defines two macros, inc1.asm and dec1.asm. The
file inc1.asm contains the definition of inc1 and dec1.asm contains the definition of dec1.

inc1.asm dec1.asm

* Macro for incrementing * Macro for decrementing
inc1 .macro A dec1 .macro A

ADD A,1,A SUB A,1,A
.endm .endm

Use the archiver to create a macro library:
ar6x -a mac inc1.asm dec1.asm

Now you can use the .mlib directive to reference the macro library and define the
inc1.asm and dec1.asm macros:

1 .mlib "mac.lib"
2
3 * Macro Call
4 00000000 inc1 A0

1 00000000 000021A0 ADD A0,1,A0
5
6 * Macro Call
7 00000004 dec1 B0

1 00000004 0003E1A2 SUB B0,1,B0

120 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.mlist/.mnolist Start/Stop Macro Expansion Listing

Syntax .mlist

.mnolist

Description Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.

The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See Chapter 5 for more information on macros and macro libraries. See the
.loop/.break/.endloop topic for information on conditional blocks.

Example This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

1 STR_3 .macro P1, P2, P3
2 .string ":p1:", ":p2:", ":p3:"
3 .endm
4
5 00000000 STR_3 "as", "I", "am"

1 00000000 0000003A .string ":p1:", ":p2:", ":p3:"
00000001 00000070
00000002 00000031
00000003 0000003A
00000004 0000003A
00000005 00000070
00000006 00000032
00000007 0000003A
00000008 0000003A
00000009 00000070
0000000a 00000033
0000000b 0000003A

6 .mnolist
7 0000000c STR_3 "as", "I", "am"
8 .mlist
9 00000018 STR_3 "as", "I", "am"

1 00000018 0000003A .string ":p1:", ":p2:", ":p3:"
00000019 00000070
0000001a 00000031
0000001b 0000003A
0000001c 0000003A
0000001d 00000070
0000001e 00000032
0000001f 0000003A
00000020 0000003A
00000021 00000070
00000022 00000033
00000023 0000003A

121SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.newblock Terminate Local Symbol Block

Syntax .newblock

Description The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.

A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, cannot be used in expressions, and do not qualify for branch expansion if used
with a branch. They can be used only as operands in 8-bit jump instructions. Local labels
are not included in the symbol table.

After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.

See Section 3.9.2 for more information on the use of local labels.

Example This example shows how the local label $1 is declared, reset, and then declared again.
1 .global table1, table2
2
3 00000000 00000028! MVKL table1,A0
4 00000004 00000068! MVKH table1,A0
5 00000008 008031A9 MVK 99, A1
6 0000000c 010848C0 || ZERO A2
7
8 00000010 80000212 $1:[A1] B $1
9 00000014 01003674 STW A2, *A0++

10 00000018 0087E1A0 SUB A1,1,A1
11 0000001c 00004000 NOP 3
12
13 .newblock ; undefine $1
14
15 00000020 00000028! MVKL table2,A0
16 00000024 00000068! MVKH table2,A0
17 00000028 008031A9 MVK 99, A1
18 0000002c 010829C0 || SUB A2,1,A2
19
20 00000030 80000212 $1:[A1] B $1
21 00000034 01003674 STW A2, *A0++
22 00000038 0087E1A0 SUB A1,1,A1
23 0000003c 00004000 NOP 3

122 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.nocmp Do Not Utilize 16-Bit Instructions in Section

Syntax .nocmp

Description The C6400+, C6740, and C6600 .nocmp directive instructs the compiler to not utilize
16-bit instructions for the code section .nocmp appears in. The .nocmp directive can
appear anywhere in the section.

Example In the example, the section one is not compressed, whereas section two is compressed.
.sect "one"
LDW *A4, A5
LDW *B4, A5
.nocmp
NOP 4
ADD A4, A5, A6
ADD B4, B5, B6
NOP
...

.sect "two"
ADD A4, A5, A6
NOP
NOP
...

123SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.noremark/.remark Control Remarks

Syntax .noremark num

.remark [num]

Description The .noremark directive suppresses the assembler remark identified by num. A remark
is an informational assembler message that is less severe than a warning.

This directive is equivalent to using the -ar[num] assembler option.

The .remark directive re-enables the remark(s) previously suppressed.

Example This example shows how to suppress the R5002 remark:

Partial source file:
;;; cl6x -mv6700+ usenoremark.asm
.noremark 5002
ADDSP A4, A4, A4

Resulting listing file:
"usenoremark.asm", REMARK at line 4: [R5002] An ADDSP/SUBSP, ADDDP/SUBDP

instruction has no unit
specifier, but the assembler can
place it on the .L or .S unit
on C6700+. On C6700+, the lack
of unit specifier may cause an
unintended functional unit
conflict in 4/7th cycle on the
.L or .S unit. Please check and
add unit specifiers to these
instructions to avoid this
hazard. Details can be found in
section "Constrains on
Floating-Point Instructions" and
"Functional Unit Constraints" in
document SPRU733

ADDSP A4, A4, A4

124 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.option Select Listing Options

Syntax .option option1[, option2,. . .]

Description The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. These are valid options:

A turns on listing of all directives and data, and subsequent expansions, macros,
and blocks.

B limits the listing of .byte and .char directives to one line.
D turns off the listing of certain directives (same effect as .drnolist).
H limits the listing of .half and .short directives to one line.
L limits the listing of .long directives to one line.
M turns off macro expansions in the listing.
N turns off listing (performs .nolist).
O turns on listing (performs .list).
R resets any B, H, L, M, T, and W (turns off the limits of B, H, L, M, T, and W).
T limits the listing of .string directives to one line.
W limits the listing of .word and .int directives to one line.
X produces a cross-reference listing of symbols. You can also obtain a

cross-reference listing by invoking the assembler with the --cross_reference
option (see Section 3.3).

Options are not case sensitive.

Example This example shows how to limit the listings of the .byte, .char, .int, long, .word, and
.string directives to one line each.

1 **
2 ** Limit the listing of .byte, .char, **
3 ** .int, .word, and .string **
4 ** directives to 1 line each. **
5 **
6 .option B, W, T
7 00000000 000000BD .byte -'C', 0B0h, 5
8 00000003 000000BC .char -'D', 0C0h, 6
9 00000008 0000000A .int 10, 35 + 'a', "abc"

10 0000001c AABBCCDD .long 0AABBCCDDh, 536 + 'A'
11 00000024 000015AA .word 5546, 78h
12 0000002c 00000052 .string "Registers"
13
14 **
15 ** Reset the listing options. **
16 **
17 .option R
18 00000035 000000BD .byte -'C', 0B0h, 5

00000036 000000B0
00000037 00000005

19 00000038 000000BC .char -'D', 0C0h, 6
00000039 000000C0
0000003a 00000006

20 0000003c 0000000A .int 10, 35 + 'a', "abc"
00000040 00000084
00000044 00000061
00000048 00000062
0000004c 00000063

21 00000050 AABBCCDD .long 0AABBCCDDh, 536 + 'A'
00000054 00000259

22 00000058 000015AA .word 5546, 78h
0000005c 00000078

125SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

23 00000060 00000052 .string "Registers"
00000061 00000065
00000062 00000067
00000063 00000069
00000064 00000073
00000065 00000074
00000066 00000065
00000067 00000072
00000068 00000073

.page Eject Page in Listing

Syntax .page

Description The .page directive produces a page eject in the listing file. The .page directive is not
printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.

Example This example shows how the .page directive causes the assembler to begin a new page
of the source listing.

Source file:
Source file (generic)

.title "**** Page Directive Example ****"
; .
; .
; .

.page

Listing file:
TMS320C6000 Assembler Version x.xx Day Time Year
Copyright (c) 1996-2009 Texas Instruments Incorporated
**** Page Directive Example **** PAGE 1

2 ; .
3 ; .
4 ; .

TMS320C6000 Assembler Version x.xx Day Time Year
Copyright (c) 1996-2009 Texas Instruments Incorporated
**** Page Directive Example **** PAGE 2

No Errors, No Warnings

126 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.sect Assemble Into Named Section

Syntax .sect " section name "

.sect " section name " [,{RO|RW}] [,{ALLOC|NOALLOC}]

Description The .sect directive defines a named section that can be used like the default .text and
.data sections. The .sect directive tells the assembler to begin assembling source code
into the named section.

The section name identifies the section. The section name must be enclosed in double
quotes. A section name can contain a subsection name in the form section name :
subsection name.

In ELF mode the sections can be marked read-only (RO) or read-write (RW). Also, the
sections can be marked for allocation (ALLOC) or no allocation (NOALLOC). These
attributes can be specified in any order, but only one attribute from each set can be
selected. RO conflicts with RW, and ALLOC conflicts with NOALLOC. If conflicting
attributes are specified the assembler generates an error, for example:
"t.asm", ERROR! at line 1:[E0000] Attribute RO cannot be combined with attr RW

.sect "illegal_sect",RO,RW

The extra operands are allowed only in ELF mode. They are ignored but generate a
warning in COFF mode. For example:
"t.asm", WARNING! at line 1:[W0000] Trailing operands ignored

.sect "cosnt_sect",RO

See Chapter 2 for more information about sections.

Example This example defines two special-purpose sections, Sym_Defs and Vars, and assembles
code into them.

1 **
2 ** Begin assembling into .text section. **
3 **
4 00000000 .text
5 00000000 000005E0 ZERO A0
6 00000004 008425E0 ZERO A1
7
8 **
9 ** Begin assembling into vars section. **

10 **
11 00000000 .sect "vars"
12 00000000 4048F5C3 pi .float 3.14
13 00000004 000007D0 max .int 2000
14 00000008 00000001 min .int 1
15
16 **
17 ** Resume assembling into .text section. **
18 **
19 00000008 .text
20 00000008 010000A8 MVK 1,A2
21 0000000c 018000A8 MVK 1,A3
22
23 **
24 ** Resume assembling into vars section. **
25 **
26 0000000c .sect "vars"
27 0000000c 00000019 count .short 25

127SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.set/.equ Define Assembly-Time Constant

Syntax symbol .set value

symbol .equ value

Description The .set and .equ directives equate a constant value to a symbol. The symbol can then
be used in place of a value in assembly source. This allows you to equate meaningful
names with constants and other values. The .set and .equ directives are identical and
can be used interchangeably.

• The symbol is a label that must appear in the label field.

• The value must be a well-defined expression, that is, all symbols in the expression
must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is
assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value is not
part of the actual object code and is not written to the output file.

Symbols defined with .set or .equ can be made externally visible with the .def or .global
directive (see the .global/.def/.ref topic). In this way, you can define global absolute
constants.

Example This example shows how symbols can be assigned with .set and .equ.
1 **
2 ** Equate symbol AUX_R1 to register A1 **
3 ** and use it instead of the register. **
4 **
5 00000001 AUX_R1 .set A1
6 00000000 00B802D4 STH AUX_R1,*+B14
7
8 **
9 ** Set symbol index to an integer expr. **

10 ** and use it as an immediate operand. **
11 **
12 00000035 INDEX .equ 100/2 +3
13 00000004 01001AD0 ADDK INDEX, A2
14
15 **
16 ** Set symbol SYMTAB to a relocatable expr. **
17 ** and use it as a relocatable operand. **
18 **
19 00000008 0000000A LABEL .word 10
20 00000009' SYMTAB .set LABEL + 1
21
22 **
23 ** Set symbol NSYMS equal to the symbol **
24 ** INDEX and use it as you would INDEX. **
25 **
26 00000035 NSYMS .set INDEX
27 0000000c 00000035 .word NSYMS

128 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.space/.bes Reserve Space

Syntax [label] .space size in bytes

[label] .bes size in bytes

Description The .space and .bes directives reserve the number of bytes given by size in bytes in the
current section and fill them with 0s. The section program counter is incremented to
point to the word following the reserved space.

When you use a label with the .space directive, it points to the first byte reserved. When
you use a label with the .bes directive, it points to the last byte reserved.

Example This example shows how memory is reserved with the .space and .bes directives.
1 ***
2 ** Begin assembling into the .text section. **
3 ***
4 00000000 .text
5 ***
6 ** Reserve 0F0 bytes (60 words in .text section). **
7 ***
8 00000000 .space 0F0h
9 000000f0 00000100 .word 100h, 200h
000000f4 00000200

10 ***
11 ** Begin assembling into the .data section. **
12 ***
13 00000000 .data
14 00000000 00000049 .string "In .data"

00000001 0000006E
00000002 00000020
00000003 0000002E
00000004 00000064
00000005 00000061
00000006 00000074
00000007 00000061

15 ***
16 ** Reserve 100 bytes in the .data section; **
17 ** RES_1 points to the first word **
18 ** that contains reserved bytes. **
19 ***
20 00000008 RES_1: .space 100
21 0000006c 0000000F .word 15
22 00000070 00000008" .word RES_1
23 ***
24 ** Reserve 20 bytes in the .data section; **
25 ** RES_2 points to the last word **
26 ** that contains reserved bytes. **
27 ***
28 00000087 RES_2: .bes 20
29 00000088 00000036 .word 36h
30 0000008c 00000087" .word RES_2

129SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.sslist/.ssnolist Control Listing of Substitution Symbols

Syntax .sslist

.ssnolist

Description Two directives allow you to control substitution symbol expansion in the listing file:

The .sslist directive allows substitution symbol expansion in the listing file. The
expanded line appears below the actual source line.

The .ssnolist directive suppresses substitution symbol expansion in the listing file.

By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.

Lines with the pound (#) character denote expanded substitution symbols.

Example This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.

1 00000000 .bss x,4
2 00000004 .bss y,4
3 00000008 .bss z,4
4
5 addm .macro src1,src2,dst
6 LDW *+B14(:src1:), A0
7 LDW *+B14(:src2:), A1
8 NOP 4
9 ADD A0,A1,A0

10 STW A0,*+B14(:dst:)
11 .endm
12
13 00000000 addm x,y,z

1 00000000 0000006C- LDW *+B14(x), A0
1 00000004 0080016C- LDW *+B14(y), A1
1 00000008 00006000 NOP 4
1 0000000c 000401E0 ADD A0,A1,A0
1 00000010 0000027C- STW A0,*+B14(z)

14
15 .sslist
16 00000014 addm x,y,z

1 00000014 0000006C- LDW *+B14(:src1:), A0
LDW *+B14(x), A0
1 00000018 0080016C- LDW *+B14(:src2:), A1
LDW *+B14(y), A1
1 0000001c 00006000 NOP 4
1 00000020 000401E0 ADD A0,A1,A0
1 00000024 0000027C- STW A0,*+B14(:dst:)
STW A0,*+B14(z)

17

130 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.string/.cstring Initialize Text

Syntax .string {expr1 | "string1" } [, ... , {exprn | "stringn" }]

.cstring {expr1 | "string1" } [, ... , {exprn | "stringn" }]

Description The .string and .cstring directives place 8-bit characters from a character string into the
current section. The expr or string can be one of the following:

• An expression that the assembler evaluates and treats as an 8-bit signed number.

• A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The .cstring directive adds a NUL character needed by C; the .string directive does not
add a NUL character. In addition, .cstring interprets C escapes (\\ \a \b \f \n \r \t \v
\<octal>).

The assembler truncates any values that are greater than eight bits. Operands must fit
on a single source statement line.

If you use a label, it points to the location of the first byte that is initialized.

When you use .string and .cstring in a .struct/.endstruct sequence, the directive only
defines a member's size; it does not initialize memory. For more information, see the
.struct/.endstruct/.tag topic.

Example In this example, 8-bit values are placed into consecutive bytes in the current section.
The label Str_Ptr has the value 0h, which is the location of the first initialized byte.

1 00000000 00000041 Str_Ptr: .string "ABCD"
00000001 00000042
00000002 00000043
00000003 00000044

2 00000004 00000041 .string 41h, 42h, 43h, 44h
00000005 00000042
00000006 00000043
00000007 00000044

3 00000008 00000041 .string "Austin", "Houston"
00000009 00000075
0000000a 00000073
0000000b 00000074
0000000c 00000069
0000000d 0000006E
0000000e 00000048
0000000f 0000006F
00000010 00000075
00000011 00000073
00000012 00000074
00000013 0000006F
00000014 0000006E

4 00000015 00000030 .string 36 + 12

131SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.struct/.endstruct/.tag Declare Structure Type

Syntax [stag] .struct [expr]

[mem0] element [expr0]
[mem1] element [expr1]

. . .
. . .
. . .

[memn] .tag stag [exprn]
. . .
. . .
. . .

[memN] element [exprN]

[size] .endstruct

label .tag stag

Description The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The
.struct directive does not allocate memory; it merely creates a symbolic template that can
be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

• The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. A .stag is optional for .struct, but is required for .tag.

• The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

• The memn/N is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

• The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, .field, and .tag. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. The .tag
directive is a special case because stag must be used (as in the definition of stag).

• The exprn/N is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

• The size is an optional label for the total size of the structure.

Directives That Can Appear in a .struct/.endstruct Sequence

NOTE: The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on word boundaries. Empty
structures are illegal.

132 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Example 1 1 real_rec .struct ; stag
2 00000000 nom .int ; member1 = 0
3 00000004 den .int ; member2 = 1
4 00000008 real_len .endstruct ; real_len = 2
5
6 00000000 0080016C- LDW *+B14(real+real_rec.den), A1
7 ; access structure
8
9 00000000 .bss real, real_len ; allocate mem rec

10

Example 2 11 cplx_rec .struct ; stag
12 00000000 reali .tag real_rec ; member1 = 0
13 00000008 imagi .tag real_rec ; member2 = 2
14 00000010 cplx_len .endstruct ; cplx_len = 4
15
16 complex .tag cplx_rec ; assign structure
17 ; attribute
18 00000008 .bss complex, cplx_len ; allocate mem rec
19
20 00000004 0100046C- LDW *+B14(complex.imagi.nom), A2
21 ; access structure
22 00000008 0100036C- LDW *+B14(complex.reali.den), A2
23 ; access structure
24 0000000c 018C4A78 CMPEQ A2, A3, A3

Example 3 1 .struct ; no stag puts
2 ; mems into global
3 ; symbol table
4
5 00000000 X .byte ; create 3 dim
6 00000001 Y .byte ; templates
7 00000002 Z .byte
8 00000003 .endstruct

Example 4 1 bit_rec .struct ; stag
2 00000000 stream .string 64
3 00000040 bit7 .field 7 ; bit7 = 64
4 00000040 bit1 .field 9 ; bit9 = 64
5 00000042 bit5 .field 10 ; bit5 = 64
6 00000044 x_int .byte ; x_int = 68
7 00000045 bit_len .endstruct ; length = 72
8
9 bits .tag bit_rec

10 00000000 .bss bits, bit_len
11
12 00000000 0100106C- LDW *+B14(bits.bit7), A2
13 ; load field
14 00000004 0109E7A0 AND 0Fh, A2, A2 ; mask off garbage

133SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.symdepend/.weak Effect Symbol Linkage and Visibility

Syntax .symdepend dst symbol name[, src symbol name]

.weak symbol name

Description These directives are used to effect symbol linkage and visibility. The .weak directive is
only valid when ELF mode is used.

The .symdepend directive creates an artificial reference from the section defining src
symbol name to the symbol dst symbol name. This prevents the linker from removing the
section containing dst symbol name if the section defining src symbol name is included
in the output module. If src symbol name is not specified, a reference from the current
section is created.

The .weak directive identifies a symbol that is used in the current module but is defined
in another module. The linker resolves this symbol's definition at link time. The .weak
directive is equivalent to the .ref directive, except that the reference has weak linkage.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. As with all symbols, if a
global symbol is defined more than once, the linker issues a multiple-definition error. The
.weak directive always creates a symbol table entry for a symbol, whether the module
uses the symbol or not; .symdepend, however, creates an entry only if the module
actually uses the symbol.

A symbol can be declared global for either of two reasons:

• If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .weak directive tells the assembler that the symbol is defined in an
external module. This prevents the assembler from issuing an unresolved reference
error. At link time, the linker looks for the symbol's definition in other modules.

• If the symbol is defined in the current module, the .symdepend directive declares that
the symbol and its definition can be used externally by other modules. These types of
references are resolved at link time.

134 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.tab Define Tab Size

Syntax .tab size

Description The .tab directive defines the tab size. Tabs encountered in the source input are
translated to size character spaces in the listing. The default tab size is eight spaces.

Example In this example, each of the lines of code following a .tab statement consists of a single
tab character followed by an NOP instruction.

Source file:
; default tab size

NOP
NOP
NOP

.tab 4
NOP
NOP
NOP

.tab 16
NOP
NOP
NOP

Listing file:
1 ; default tab size
2 00000000 00000000 NOP
3 00000004 00000000 NOP
4 00000008 00000000 NOP
5 .tab4
7 0000000c 00000000 NOP
8 00000010 00000000 NOP
9 00000014 00000000 NOP

10 .tab 16
12 00000018 00000000 NOP
13 0000001c 00000000 NOP
14 00000020 00000000 NOP

135SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.text Assemble Into the .text Section

Syntax .text

Description The .text directive tells the assembler to begin assembling into the .text section, which
usually contains executable code. The section program counter is set to 0 if nothing has
yet been assembled into the .text section. If code has already been assembled into the
.text section, the section program counter is restored to its previous value in the section.

The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive
to specify a different section.

For more information about sections, see Chapter 2.

Example This example assembles code into the .text and .data sections.
1 **
2 ** Begin assembling into .data section. **
3 **
4 00000000 .data
5 00000000 00000005 .byte 5,6
00000001 00000006

6
7 **
8 ** Begin assembling into .text section. **
9 **

10 00000000 .text
11 00000000 00000001 .byte 1
12 00000001 00000002 .byte 2,3

00000002 00000003
13
14 **
15 ** Resume assembling into .data section.**
16 **
17 00000002 .data
18 00000002 00000007 .byte 7,8

00000003 00000008
19
20 **
21 ** Resume assembling into .text section.**
22 **
23 00000003 .text
24 00000003 00000004 .byte 4

136 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

.title Define Page Title

Syntax .title "string"

Description The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.

The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:
*** WARNING! line x: W0001: String is too long - will be truncated

The assembler prints the title on the page that follows the directive and on subsequent
pages until another .title directive is processed. If you want a title on the first page, the
first source statement must contain a .title directive.

Example In this example, one title is printed on the first page and a different title is printed on
succeeding pages.

Source file:
.title "**** Fast Fourier Transforms ****"

; .
; .
; .

.title "**** Floating-Point Routines ****"

.page

Listing file:
TMS320C6000 Assembler Version x.xx Day Time Year
Copyright (c) 1996-2009 Texas Instruments Incorporated
**** Fast Fourier Transforms **** PAGE 1

2 ; .
3 ; .
4 ; .

TMS320C6000 Assembler Version x.xx Day Time Year
Copyright (c) 1996-2009 Texas Instruments Incorporated
**** Floating-Point Routines **** PAGE 2

No Errors, No Warnings

137SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.union/.endunion/.tag Declare Union Type

Syntax [stag] .union [expr]

[mem0] element [expr0]
[mem1] element [expr1]

. . .
. . .
. . .

[memn] .tag stag [exprn]
. . .
. . .
. . .

[memN] element [exprN]

[size] .endunion

label .tag stag

Description The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define
several alternate structures and then let the assembler calculate the element offset. This
is similar to a C union. The .union directive does not allocate any memory; it merely
creates a symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be
nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures or unions that
contain other structures or unions. The .tag directive does not allocate memory. The
structure or union tag of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

• The utag is the union's tag. is the union's tag. Its value is associated with the
beginning of the union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset from the top of the
union. In this case, each member must have a unique name.

• The expr is an optional expression indicating the beginning offset of the union.
Unions default to start at 0. This parameter can only be used with a top-level union. It
cannot be used when defining a nested union.

• The memn/N is an optional label for a member of the union. This label is absolute and
equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

• The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. An element can also be a complete
declaration of a nested structure or union, or a structure or union declared by its tag.
Following a .union directive, these directives describe the element's size. They do not
allocate memory.

• The exprn/N is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

• The size is an optional label for the total size of the union.

138 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Directives Reference

Directives That Can Appear in a .union/.endunion Sequence

NOTE: The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty structures are illegal.

These examples show unions with and without tags.

Example 1 1 .global employid
2 xample .union ; utag
3 0000 ival .word ; member1 = int
4 0000 fval .float ; member2 = float
5 0000 sval .string ; member3 = string
6 0002 real_len .endunion ; real_len = 2
7
8 000000 .bss employid, real_len ;allocate memory
9

10 employid .tag xample ; name an instance
11 000000 0000- ADD employid.fval, A ; access union element

Example 2 1
2 ; utag
3 0000 x .long ; member1 = long
4 0000 y .float ; member2 = float
5 0000 z .word ; member3 = word
6 0002 size_u .endunion ; real_len = 2
7

139SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.usect Reserve Uninitialized Space

Syntax symbol .usect "section name" , size in bytes[, alignment[, bank offset]]

Description The .usect directive reserves space for variables in an uninitialized, named section. This
directive is similar to the .bss directive; both simply reserve space for data and that
space has no contents. However, .usect defines additional sections that can be placed
anywhere in memory, independently of the .bss section.

• The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

• The section name must be enclosed in double quotes. This parameter names the
uninitialized section. A section name can contain a subsection name in the form
section name : subsection name.

• The size in bytes is an expression that defines the number of bytes that are reserved
in section name.

• The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. This boundary indicates the size of the slot
in bytes and must be set to a power of 2.

• The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

Initialized sections directives (.text, .data, and .sect) end the current section and tell the
assembler to begin assembling into another section. A .usect or .bss directive
encountered in the current section is simply assembled, and assembly continues in the
current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about sections, see Chapter 2.

Example This example uses the .usect directive to define two uninitialized, named sections, var1
and var2. The symbol ptr points to the first byte reserved in the var1 section. The symbol
array points to the first byte in a block of 100 bytes reserved in var1, and dflag points to
the first byte in a block of 50 bytes in var1. The symbol vec points to the first byte
reserved in the var2 section.

140 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

2 bytes

100 bytes

50 bytes

array

ptr

dflag

Section var1

152 bytes reserved
in var1

100 bytes

ptr

Section var2

100 bytes reserved
in var2

www.ti.com Directives Reference

Figure 4-8 shows how this example reserves space in two uninitialized sections, var1
and var2.

1 ***
2 ** Assemble into .text section **
3 ***
4 00000000 .text
5 00000000 008001A0 MV A0,A1
6
7 ***
8 ** Reserve 2 bytes in var1. **
9 ***

10 00000000 ptr .usect "var1",2
11 00000004 0100004C- LDH *+B14(ptr),A2 ; still in .text
12
13 ***
14 ** Reserve 100 bytes in var1 **
15 ***
16 00000002 array .usect "var1",100
17 00000008 01800128- MVK array,A3 ; still in .text
18 0000000c 01800068- MVKH array,A3
19
20 ***
21 ** Reserve 50 bytes in var1 **
22 ***
23 00000066 dflag .usect "var1",50
24 00000010 02003328- MVK dflag,A4
25 00000014 02000068- MVKH dflag,A4
26
27 ***
28 ** Reserve 100 bytes in var1 **
29 ***
30 00000000 vec .usect "var2",100
31 00000018 0000002A- MVK vec,B0 ; still in .text

32 0000001c 0000006A- MVKH vec,B0

Figure 4-8. The .usect Directive

141SPRU186V–July 2011 Assembler Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Directives Reference www.ti.com

.unasg/.undefine Turn Off Substitution Symbol

Syntax .unasg symbol

.undefine symbol

Description The .unasg and .undefine directives remove the definition of a substitution symbol
created using .asg or .define. The named symbol will removed from the substitution
symbol table from the point of the .undefine or .unasg to the end of the assembly file.

These directives can be used to remove from the assembly environment any C/C++
macros that may cause a problem. See Chapter 12 for more information about using
C/C++ headers in assembly source.

.var Use Substitution Symbols as Local Variables

Syntax .var sym1 [, sym2 , ... , symn]

Description The .var directive allows you to use substitution symbols as local variables within a
macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after
expansion.

See Chapter 5 for information on macros.

142 Assembler Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 5
SPRU186V–July 2011

Macro Description

The TMS320C6000 assembler supports a macro language that enables you to create your own
instructions. This is especially useful when a program executes a particular task several times. The macro
language lets you:

• Define your own macros and redefine existing macros

• Simplify long or complicated assembly code

• Access macro libraries created with the archiver

• Define conditional and repeatable blocks within a macro

• Manipulate strings within a macro

• Control expansion listing

Topic ... Page

5.1 Using Macros .. 144
5.2 Defining Macros .. 144
5.3 Macro Parameters/Substitution Symbols .. 146
5.4 Macro Libraries ... 151
5.5 Using Conditional Assembly in Macros .. 152
5.6 Using Labels in Macros .. 154
5.7 Producing Messages in Macros ... 155
5.8 Using Directives to Format the Output Listing .. 156
5.9 Using Recursive and Nested Macros .. 157
5.10 Macro Directives Summary ... 159

143SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Using Macros www.ti.com

5.1 Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source
statements for a routine, you can define the routine as a macro, then call the macro in the places where
you would normally repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters
within a macro. This enables you to pass different information to the macro each time you call it. The
macro language supports a special symbol called a substitution symbol, which is used for macro
parameters. See Section 5.3 for more information.

Using a macro is a 3-step process.

Step 1. Define the macro. You must define macros before you can use them in your program. There
are two methods for defining macros:

(a) Macros can be defined at the beginning of a source file or in a copy/include file. See
Section 5.2, Defining Macros, for more information.

(b) Macros can also be defined in a macro library. A macro library is a collection of files in
archive format created by the archiver. Each member of the archive file (macro library)
may contain one macro definition corresponding to the member name. You can access a
macro library by using the .mlib directive. For more information, see Section 5.4.

Step 2. Call the macro. After you have defined a macro, call it by using the macro name as a
mnemonic in the source program. This is referred to as a macro call.

Step 3. Expand the macro. The assembler expands your macros when the source program calls
them. During expansion, the assembler passes arguments by variable to the macro
parameters, replaces the macro call statement with the macro definition, then assembles the
source code. By default, the macro expansions are printed in the listing file. You can turn off
expansion listing by using the .mnolist directive. For more information, see Section 5.8.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This
redefines any previously defined macro, library entry, directive, or instruction mnemonic that has the same
name as the macro. This allows you to expand the functions of directives and instructions, as well as to
add new instructions.

5.2 Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it.
Macros can be defined at the beginning of a source file or in a .copy/.include file (see Copy Source File);
they can also be defined in a macro library. For more information about macro libraries, see Section 5.4.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be
defined in the same file. Nested macros are discussed in Section 5.9.

A macro definition is a series of source statements in the following format:

macname .macro [parameter1] [, ... , parametern]

model statements or macro directives

[.mexit]

.endm

macname names the macro. You must place the name in the source statement's label field.
Only the first 128 characters of a macro name are significant. The assembler
places the macro name in the internal opcode table, replacing any instruction or
previous macro definition with the same name.

.macro is the directive that identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

parameter 1, are optional substitution symbols that appear as operands for the .macro directive.
parameter n Parameters are discussed in Section 5.3.

144 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Defining Macros

model statements are instructions or assembler directives that are executed each time the macro is
called.

macro directives are used to control macro expansion.
.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when

error testing confirms that macro expansion fails and completing the rest of the
macro is unnecessary.

.endm is the directive that terminates the macro definition.

If you want to include comments with your macro definition but do not want those comments to appear in
the macro expansion, use an exclamation point to precede your comments. If you do want your comments
to appear in the macro expansion, use an asterisk or semicolon. See Section 5.7 for more information
about macro comments.

Example 5-1 shows the definition, call, and expansion of a macro.

Example 5-1. Macro Definition, Call, and Expansion

Macro definition: The following code defines a macro, sadd4, with four parameters:
1 sadd4 .macro r1,r2,r3,r4
2 !
3 ! sadd4 r1, r2 ,r3, r4
4 ! r1 = r1 + r2 + r3 + r4 (saturated)
5 !
6 SADD r1,r2,r1
7 SADD r1,r3,r1
8 SADD r1,r4,r1
9 .endm

Macro call: The following code calls the sadd4 macro with four arguments:
10
11 00000000 sadd4 A0,A1,A2,A3

Macro expansion: The following code shows the substitution of the macro definition for the macro call. The
assembler substitutes A0, A1, A2, and A3 for the r1, r2, r3, and r4 parameters of sadd4.
1 00000000 00040278 SADD A0,A1,A0
1 00000004 00080278 SADD A0,A2,A0
1 00000008 000C0278 SADD A0,A3,A0

145SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Macro Parameters/Substitution Symbols www.ti.com

5.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can assign parameters within
the macro. The macro language supports a special symbol, called a substitution symbol, which is used for
macro parameters.

Macro parameters are substitution symbols that represent a character string. These symbols can also be
used outside of macros to equate a character string to a symbol name (see Section 3.9.8).

Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder
of the symbol can be a combination of alphanumeric characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they are defined in. You can define
up to 32 local substitution symbols (including substitution symbols defined with the .var directive) per
macro. For more information about the .var directive, see Section 5.3.6.

During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters
without corresponding arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string equivalent of all remaining
arguments.

If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you
must surround these terms with quotation marks.

At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.

Example 5-2 shows the expansion of a macro with varying numbers of arguments.

Example 5-2. Calling a Macro With Varying Numbers of Arguments

Macro definition:
Parms .macro a,b,c
; a = :a:
; b = :b:
; c = :c:

.endm

Calling the macro:
Parms 100,label Parms 100,label,x,y

; a = 100 ; a = 100
; b = label ; b = label
; c = " " ; c = x,y

Parms 100, , x Parms "100,200,300",x,y
; a = 100 ; a = 100,200,300
; b = " " ; b = x
; c = x ; c = y

Parms """string""",x,y
; a = "string"
; b = x
; c = y

146 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Macro Parameters/Substitution Symbols

5.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.

• The .asg directive assigns a character string to a substitution symbol.

For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler
reads characters up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol. The syntax of the .asg directive is:

.asg["]character string["], substitution symbol

Example 5-3 shows character strings being assigned to substitution symbols.

Example 5-3. The .asg Directive

.asg "A4", RETVAL ; return value

• The .eval directive performs arithmetic on numeric substitution symbols.

The .eval directive evaluates the expression and assigns the string value of the result to the
substitution symbol. If the expression is not well defined, the assembler generates an error and
assigns the null string to the symbol. The syntax of the .eval directive is:

.eval well-defined expression , substitution symbol

Example 5-4 shows arithmetic being performed on substitution symbols.

Example 5-4. The .eval Directive

.asg 1,counter

.loop 100

.word counter

.eval counter + 1,counter

.endloop

In Example 5-4, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you
must use .eval if you want to calculate a value from an expression. While .asg only assigns a character
string to a substitution symbol, .eval evaluates an expression and then assigns the character string
equivalent to a substitution symbol.

See Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

147SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Macro Parameters/Substitution Symbols www.ti.com

5.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string
value of substitution symbols. These functions always return a value, and they can be used in
expressions. Built-in substitution symbol functions are especially useful in conditional assembly
expressions. Parameters of these functions are substitution symbols or character-string constants.

In the function definitions shown in Table 5-1, a and b are parameters that represent substitution symbols
or character-string constants. The term string refers to the string value of the parameter. The symbol ch
represents a character constant.

Table 5-1. Substitution Symbol Functions and Return Values

Function Return Value

$symlen (a) Length of string a

$symcmp (a,b) < 0 if a < b; 0 if a = b; > 0 if a > b

$firstch (a,ch) Index of the first occurrence of character constant ch in string a

$lastch (a,ch) Index of the last occurrence of character constant ch in string a

$isdefed (a) 1 if string a is defined in the symbol table

0 if string a is not defined in the symbol table

$ismember (a,b) Top member of list b is assigned to string a

0 if b is a null string

$iscons (a) 1 if string a is a binary constant

2 if string a is an octal constant

3 if string a is a hexadecimal constant

4 if string a is a character constant

5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name

0 if string a is not a valid symbol name

$isreg (a) (1) 1 if string a is a valid predefined register name

0 if string a is not a valid predefined register name
(1) For more information about predefined register names, see Section 3.9.5.

Example 5-5 shows built-in substitution symbol functions.

Example 5-5. Using Built-In Substitution Symbol Functions

pushx .macro list
!
! Push more than one item
! $ismember removes the first item in the list

.var item

.loop

.break ($ismember(item, list) = 0)
STW item,*B15--[1]
.endloop
.endm

pushx A0,A1,A2,A3

148 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Macro Parameters/Substitution Symbols

5.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding
character string. If that string is also a substitution symbol, the assembler performs substitution again. The
assembler continues doing this until it encounters a token that is not a substitution symbol or until it
encounters a substitution symbol that it has already encountered during this evaluation.

In Example 5-6, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Example 5-6. Recursive Substitution

.asg "x",z ; declare z and assign z = "x"

.asg "z",y ; declare y and assign y = "z"

.asg "y",x ; declare x and assign x = "y"
MVKL x, A1
MVKH x, A1

* MVKL x, A1 ; recursive expansion
* MVKH x, A1 ; recursive expansion

5.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution
operator, which is a set of colons surrounding the symbol, enables you to force the substitution of a
symbol's character string. Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol.

The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

Example 5-7 shows how the forced substitution operator is used.

Example 5-7. Using the Forced Substitution Operator

force .macro x
.loop 8

PORT:x: .set x*4
.eval x+1, x
.endloop
.endm

.global portbase
force

PORT0 .set 0
PORT1 .set 4
.
.
.

PORT7 .set 28

149SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Macro Parameters/Substitution Symbols www.ti.com

5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol with subscripted
substitution symbols. You must use the forced substitution operator for clarity.

You can access substrings in two ways:

• :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one character.

• :symbol (well-defined expression 1, well-defined expression 2):

In this method, expression1 represents the substring's starting position, and expression2 represents the
substring's length. You can specify exactly where to begin subscripting and the exact length of the
resulting character string. The index of substring characters begins with 1, not 0.

Example 5-8 and Example 5-9 show built-in substitution symbol functions used with subscripted
substitution symbols.

In Example 5-8, subscripted substitution symbols redefine the STW instruction so that it handles
immediates. In Example 5-9, the subscripted substitution symbol is used to find a substring strg1
beginning at position start in the string strg2. The position of the substring strg1 is assigned to the
substitution symbol pos.

Example 5-8. Using Subscripted Substitution Symbols to Redefine an Instruction

storex .macro x
.var tmp
.asg :x(1):, tmp
.if $symcmp(tmp,"A") == 0
STW x,*A15--(4)
.elseif $symcmp(tmp,"B") == 0
STW x,*A15--(4)
.elseif $iscons(x)
MVK x,A0
STW A0,*A15--(4)
.else
.emsg "Bad Macro Parameter"
.endif
.endm

storex 10h
storex A15

150 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Macro Libraries

Example 5-9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strg1,strg2,pos
.var len1,len2,i,tmp
.if $symlen(start) = 0
.eval 1,start
.endif
.eval 0,pos
.eval start,i
.eval $symlen(strg1),len1
.eval $symlen(strg2),len2
.loop
.break I = (len2 - len1 + 1)
.asg ":strg2(i,len1):",tmp
.if $symcmp(strg1,tmp) = 0
.eval i,pos
.break
.else
.eval I + 1,i
.endif
.endloop
.endm

.asg 0,pos

.asg "ar1 ar2 ar3 ar4",regs
substr 1,"ar2",regs,pos
.word pos

5.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you can use the .var directive to
define up to 32 local macro substitution symbols (including parameters) per macro. The .var directive
creates temporary substitution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and they are lost after expansion.

.var sym1 [,sym2 , ... ,symn]

The .var directive is used in Example 5-8 and Example 5-9.

5.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain
macro definitions. You must use the archiver to collect these files, or members, into a single file (called an
archive). Each member of a macro library contains one macro definition. The files in a macro library must
be unassembled source files. The macro name and the member name must be the same, and the macro
filename's extension must be .asm. For example:

Macro Name Filename in Macro Library

simple simple.asm

add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in Define Macro
Library). The syntax is:

.mlib filename

151SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Using Conditional Assembly in Macros www.ti.com

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a
table of the library's contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from the library and loads it into
the macro table.

The assembler expands the library entry in the same way it expands other macros. See Section 5.1 for
how the assembler expands macros. You can control the listing of library entry expansions with the .mlist
directive. For more information about the .mlist directive, see Section 5.8 and Start/Stop Macro Expansion
Listing. Only macros that are actually called from the library are extracted, and they are extracted only
once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to
contain macro definitions. The assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable results. For information about
creating a macro library archive, see Section 6.1.

5.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be
nested within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression

[.elseif well-defined expression]

[.else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used
more than once within a conditional assembly code block. When .elseif and .else are omitted and when
the .if expression is false (0), the assembler continues to the code following the .endif directive. See
Assemble Conditional Blocks for more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

.loop [well-defined expression]

[.break [well-defined expression]]

.endloop

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to
be performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler
encounters a .break directive with an expression that is true (nonzero). See Assemble Conditional Blocks
Repeatedly for more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or
when the .break expression is omitted. When the loop is broken, the assembler continues with the code
after the .endloop directive.

For more information, see Section 4.7.

Example 5-10, Example 5-11, and Example 5-12 show the .loop/.break/ .endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

152 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Using Conditional Assembly in Macros

Example 5-10. The .loop/.break/.endloop Directives

.asg 1,x

.loop

.break (x == 10) ; if x == 10, quit loop/break with expression

.eval x+1,x

.endloop

Example 5-11. Nested Conditional Assembly Directives

.asg 1,x

.loop

.if (x == 10) ; if x == 10, quit loop

.break (x == 10) ; force break

.endif

.eval x+1,x

.endloop

Example 5-12. Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

MACK3 .macro src1, src2, sum, k
!

! dst = dst + k * (src1 * src2)

.if k = 0
MPY src1, src2, src2
NOP
ADD src2, sum, sum
.else
MPY src1,src2,src2
MVK k,src1
MPY src1,src2,src2
NOP
ADD src2,sum,sum
.endif

.endm

MACK3 A0,A1,A3,0
MACK3 A0,A1,A3,100

153SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Using Labels in Macros www.ti.com

5.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros. If a macro is
expanded more than once, its labels are defined more than once. Defining a label more than once is
illegal. The macro language provides a method of defining labels in macros so that the labels are unique.
Simply follow each label with a question mark, and the assembler replaces the question mark with a
period followed by a unique number. When the macro is expanded, you do not see the unique number in
the listing file. Your label appears with the question mark as it did in the macro definition. You cannot
declare this label as global. The syntax for a unique label is:

label ?

Example 5-13 shows unique label generation in a macro. The maximum label length is shortened to allow
for the unique suffix. For example, if the macro is expanded fewer than 10 times, the maximum label
length is 126 characters. If the macro is expanded from 10 to 99 times, the maximum label length is 125.
The label with its unique suffix is shown in the cross-listing file. To obtain a cross-listing file, invoke the
assembler with the --cross_reference option (see Section 3.3).

Example 5-13. Unique Labels in a Macro

1 min .macro x,y,z
2
3 MV y,z
4 || CMPLT x,y,y
5 [y] B l?
6 NOP 5
7 MV x,z
8 l?
9 .endm
10
11
12 00000000 MIN A0,A1,A2

1
1 00000000 010401A1 MV A1,A2
1 00000004 00840AF8 || CMPLT A0,A1,A1
1 00000008 80000292 [A1] B l?
1 0000000c 00008000 NOP 5
1 00000010 010001A0 MV A0,A2
1 00000014 l?

LABEL VALUE DEFN REF

.TMS320C60 00000001 0

.tms320C60 00000001 0
l1 00000014' 12 12

154 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Producing Messages in Macros

5.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to
your needs. The last line of the listing file shows the error and warning counts. These counts alert you to
problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive generates errors in the same
manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg directive functions in the same
manner as the .emsg directive but does not set the error count or prevent the creation of an
object file.

.wmsg sends warning messages to the listing file. The .wmsg directive functions in the same
manner as the .emsg directive, but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the
expansion of the macro. An exclamation point in column 1 identifies a macro comment. If you want your
comments to appear in the macro expansion, precede your comment with an asterisk or semicolon.

Example 5-14 shows user messages in macros and macro comments that do not appear in the macro
expansion.

For more information about the .emsg, .mmsg, and .wmsg assembler directives, see Define Messages.

Example 5-14. Producing Messages in a Macro

TEST .macro x,y
!
! This macro checks for the correct number of parameters.
! It generates an error message if x and y are not present.
!
! The first line tests for proper input.
!

.if ($symlen(x) + ||$symlen(y) == 0)

.emsg "ERROR --missing parameter in call to TEST"

.mexit

.else
.
.

.endif

.if
.
.

.endif

.endm

155SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Using Directives to Format the Output Listing www.ti.com

5.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to
see this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You
may want to turn this listing off or on within your listing file. Four sets of directives enable you to control
the listing of this information:

• Macro and loop expansion listing
.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code

encountered in those blocks.
suppresses the listing of macro expansions and .loop/ .endloop blocks..mnolist

For macro and loop expansion listing, .mlist is the default.

• False conditional block listing
.fclist causes the assembler to include in the listing file all conditional blocks that do not

generate code (false conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

.fcnolist suppresses the listing of false conditional blocks. Only the code in conditional blocks
that actually assemble appears in the listing. The .if, .elseif, .else, and .endif directives
do not appear in the listing.

For false conditional block listing, .fclist is the default.

• Substitution symbol expansion listing
.sslist expands substitution symbols in the listing. This is useful for debugging the expansion

of substitution symbols. The expanded line appears below the actual source line.
.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

• Directive listing
.drlist causes the assembler to print to the listing file all directive lines.
.drnolist suppresses the printing of certain directives in the listing file. These directives are

.asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg,

.mmsg, .length, .width, and .break.
For directive listing, .drlist is the default.

156 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Using Recursive and Nested Macros

5.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other
macros in a macro definition. You can nest macros up to 32 levels deep. When you use recursive macros,
you call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you
pass to macro parameters because the assembler uses dynamic scoping for parameters. This means that
the called macro uses the environment of the macro from which it was called.

Example 5-15 shows nested macros. The y in the in_block macro hides the y in the out_block macro. The
x and z from the out_block macro, however, are accessible to the in_block macro.

Example 5-15. Using Nested Macros

in_block .macro y,a
. ; visible parameters are y,a and x,z from the calling macro

.endm

out_block .macro x,y,z
. ; visible parameters are x,y,z
.

in_block x,y ; macro call with x and y as arguments
.
.

.endm
out_block ; macro call

Example 5-16 shows recursive and fact macros. The fact macro produces assembly code necessary to
calculate the factorial of n, where n is an immediate value. The result is placed in the A1 register . The fact
macro accomplishes this by calling fact1, which calls itself recursively.

Example 5-16. Using Recursive Macros

.fcnolist

fact1 .macro n

.if n == 1
MVK globcnt, A1 ; Leave the answer in the A1 register.

.else
.eval 1, temp ; Compute the decrement of symbol n.
.eval globcnt*temp, globcnt ; Multiply to get a new result.
fact1 temp ; Recursive call.

.endif

.endm

fact .macro n
.if ! $iscons(n) ; Test that input is a constant.

.emsg "Parm not a constant"

.elseif n < 1 ; Type check input.
MVK 0, A1

.else
.var temp
.asg n, globcnt

fact1 n ; Perform recursive procedure

.endif

.endm

157SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Using Recursive and Nested Macros www.ti.com

158 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Macro Directives Summary

5.10 Macro Directives Summary

The directives listed in Table 5-2 through Table 5-6 can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are general assembly language
directives.

Table 5-2. Creating Macros

See

Mnemonic and Syntax Description Macro Use Directive

.endm End macro definition Section 5.2 .endm

macname .macro [parameter1][,... , parametern] Define macro by macname Section 5.2 .macro

.mexit Go to .endm Section 5.2 Section 5.2

.mlib filename Identify library containing macro definitions Section 5.4 .mlib

Table 5-3. Manipulating Substitution Symbols

See

Mnemonic and Syntax Description Macro Use Directive

.asg ["]character string["], substitution symbol Assign character string to substitution symbol Section 5.3.1 .asg

.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols Section 5.3.1 .eval

.var sym1 [, sym2 , ..., symn] Define local macro symbols Section 5.3.6 .var

Table 5-4. Conditional Assembly

See

Mnemonic and Syntax Description Macro Use Directive

.break [well-defined expression] Optional repeatable block assembly Section 5.5 .break

.endif End conditional assembly Section 5.5 .endif

.endloop End repeatable block assembly Section 5.5 .endloop

.else Optional conditional assembly block Section 5.5 .else

.elseif well-defined expression Optional conditional assembly block Section 5.5 .elseif

.if well-defined expression Begin conditional assembly Section 5.5 .if

.loop [well-defined expression] Begin repeatable block assembly Section 5.5 .loop

Table 5-5. Producing Assembly-Time Messages

See

Mnemonic and Syntax Description Macro Use Directive

.emsg Send error message to standard output Section 5.7 .emsg

.mmsg Send assembly-time message to standard output Section 5.7 .mmsg

.wmsg Send warning message to standard output Section 5.7 .wmsg

Table 5-6. Formatting the Listing

See

Mnemonic and Syntax Description Macro Use Directive

.fclist Allow false conditional code block listing (default) Section 5.8 .fclist

.fcnolist Suppress false conditional code block listing Section 5.8 .fcnolist

.mlist Allow macro listings (default) Section 5.8 .mlist

.mnolist Suppress macro listings Section 5.8 .mnolist

.sslist Allow expanded substitution symbol listing Section 5.8 .sslist

.ssnolist Suppress expanded substitution symbol listing (default) Section 5.8 .ssnolist

159SPRU186V–July 2011 Macro Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

160 Macro Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 6
SPRU186V–July 2011

Archiver Description

The TMS320C6000 archiver lets you combine several individual files into a single archive file. For
example, you can collect several macros into a macro library. The assembler searches the library and
uses the members that are called as macros by the source file. You can also use the archiver to collect a
group of object files into an object library. The linker includes in the library the members that resolve
external references during the link. The archiver allows you to modify a library by deleting, replacing,
extracting, or adding members.

Topic ... Page

6.1 Archiver Overview ... 162
6.2 The Archiver's Role in the Software Development Flow .. 163
6.3 Invoking the Archiver ... 164
6.4 Archiver Examples ... 165
6.5 Library Information Archiver Description .. 166

161SPRU186V–July 2011 Archiver Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Archiver Overview www.ti.com

6.1 Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as
input; the assembler can use libraries that contain individual source files, and the linker can use libraries
that contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example,
you can write several arithmetic routines, assemble them, and use the archiver to collect the object files
into a single, logical group. You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You
can use the .mlib directive during assembly to specify that macro library to be searched for the macros
that you call. Chapter 5 discusses macros and macro libraries in detail, while this chapter explains how to
use the archiver to build libraries.

162 Archiver Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

C/C++
source

files

C/C++
compiler

Assembler
source

Assembler

Executable
object file

Debugging
toolsLibrary-build

process

Run-time-
support
library

Archiver

Archiver

Macro
library

Absolute lister

Hex-conversion
utility

Cross-reference
lister

Object file
utilities

C6000

Linker

Linear
assembly

Assembly
optimizer

Assembly
optimized

file

Macro
source

files

Object
files

EPROM
programmer

Library of
object
files

www.ti.com The Archiver's Role in the Software Development Flow

6.2 The Archiver's Role in the Software Development Flow

Figure 6-1 shows the archiver's role in the software development process. The shaded portion highlights
the most common archiver development path. Both the assembler and the linker accept libraries as input.

Figure 6-1. The Archiver in the TMS320C6000 Software Development Flow

163SPRU186V–July 2011 Archiver Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Invoking the Archiver www.ti.com

6.3 Invoking the Archiver

To invoke the archiver, enter:

ar6x [-]command [options] libname [filename1 ... filenamen]

ar6x is the command that invokes the archiver.
[-]command tells the archiver how to manipulate the existing library members and any specified. A

command can be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command per
invocation. The archiver commands are as follows:
@ uses the contents of the specified file instead of command line entries. You can

use this command to avoid limitations on command line length imposed by the
host operating system. Use a ; at the beginning of a line in the command file to
include comments. (See Example 6-1 for an example using an archiver command
file.)

a adds the specified files to the library. This command does not replace an existing
member that has the same name as an added file; it simply appends new
members to the end of the archive.

d deletes the specified members from the library.
r replaces the specified members in the library. If you do not specify filenames, the

archiver replaces the library members with files of the same name in the current
directory. If the specified file is not found in the library, the archiver adds it instead
of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files
are listed. If you do not specify any filenames, the archiver lists all the members in
the specified library.

x extracts the specified files. If you do not specify member names, the archiver
extracts all library members. When the archiver extracts a member, it simply
copies the member into the current directory; it does not remove it from the library.

options In addition to one of the commands, you can specify options. To use options, combine
them with a command; for example, to use the a command and the s option, enter -as
or as. The hyphen is optional for archiver options only. These are the archiver options:
-q (quiet) suppresses the banner and status messages.
-s prints a list of the global symbols that are defined in the library. (This option is

valid only with the a, r, and d commands.)
-u replaces library members only if the replacement has a more recent modification

date. You must use the r command with the -u option to specify which members to
replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an
old library and its members.

libname names the archive library to be built or modified. If you do not specify an extension for
libname, the archiver uses the default extension .lib.

filenames names individual files to be manipulated. These files can be existing library members or
new files to be added to the library. When you enter a filename, you must enter a
complete filename including extension, if applicable.

Naming Library Members

NOTE: It is possible (but not desirable) for a library to contain several members with the same
name. If you attempt to delete, replace, or extract a member whose name is the same as
another library member, the archiver deletes, replaces, or extracts the first library member
with that name.

164 Archiver Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Archiver Examples

6.4 Archiver Examples

The following are examples of typical archiver operations:

• If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj,
enter:

ar6x -a function sine.obj cos.obj flt.obj

The archiver responds as follows:
==> new archive 'function.lib' ==> building new archive 'function.lib'

• You can print a table of contents of function.lib with the -t command, enter:
ar6x -t function

The archiver responds as follows:
FILE NAME SIZE DATE

---------------- ----- ------------------------
sine.obj 300 Wed Jun 14 10:00:24 2006
cos.obj 300 Wed Jun 14 10:00:30 2006
flt.obj 300 Wed Jun 14 09:59:56 2006

• If you want to add new members to the library, enter:
ar6x -as function atan.obj

The archiver responds as follows:
==> symbol defined: '_sin'
==> symbol defined: '_cos'
==> symbol defined: '_tan'
==> symbol defined: '_atan
==> building archive 'function.lib'

Because this example does not specify an extension for the libname, the archiver adds the files to the
library called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the
archiver to list the global symbols that are defined in the library.)

• If you want to modify a library member, you can extract it, edit it, and replace it. In this example,
assume there is a library named macros.lib that contains the members push.asm, pop.asm, and
swap.asm.
ar6x -x macros push.asm

The archiver makes a copy of push.asm and places it in the current directory; it does not remove
push.asm from the library. Now you can edit the extracted file. To replace the copy of push.asm in the
library with the edited copy, enter:
ar6x -r macros push.asm

• If you want to use a command file, specify the command filename after the -@ command. For
example:
ar6x -@modules.cmd

The archiver responds as follows:
==> building archive 'modules.lib'

Example 6-1 is the modules.cmd command file. The r command specifies that the filenames given in
the command file replace files of the same name in the modules.lib library. The -u option specifies that
these files are replaced only when the current file has a more recent revision date than the file that is
in the library.

165SPRU186V–July 2011 Archiver Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Library Information Archiver Description www.ti.com

Example 6-1. Archiver Command File

; Command file to replace members of the
; modules library with updated files
; Use r command and u option:
ru
; Specify library name:
modules.lib
; List filenames to be replaced if updated:
align.asm
bss.asm
data.asm
text.asm
sect.asm
clink.asm
copy.asm
double.asm
drnolist.asm
emsg.asm
end.asm

6.5 Library Information Archiver Description

Section 6.1 explains how to use the archiver to create libraries of object files for use in the linker of one or
more applications. You can have multiple versions of the same object file libraries, each built with different
sets of build options. For example, you might have different versions of your object file library for big and
little endian, for different architecture revisions, or for different ABIs depending on the typical build
environments of client applications. Unfortunately, if there are several different versions of your library it
can become cumbersome to keep track of which version of the library needs to be linked in for a particular
application.

When several versions of a single library are available, the library information archiver can be used to
create an index library of all of the object file library versions. This index library is used in the linker in
place of a particular version of your object file library. The linker looks at the build options of the
application being linked, and uses the specified index library to determine which version of your object file
library to include in the linker. If one or more compatible libraries were found in the index library, the most
suitable compatible library is linked in for your application.

6.5.1 Invoking the Library Information Archiver

To invoke the library information archiver, enter:

libinfo6x [options] -o=libname libname1 [libname2 ... libnamen]

is the command that invokes the library information archiver.libinfo6x
options changes the default behavior of the library information archiver. These options are:

-o libname specifies the name of the index library to create or update. This option is
required.

-u updates any existing information in the index library specified with the -o
option instead of creating a new index.

libnames names individual object file libraries to be manipulated. When you enter a libname, you
must enter a complete filename including extension, if applicable.

166 Archiver Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Library Information Archiver Description

6.5.2 Library Information Archiver Example

Consider these object file libraries that all have the same members, but are built with different build
options:

Object File Library Name Build Options

mylib_6200_be.lib -mv6200 --endian=big

mylib_6200_le.lib -mv6200 --endian=little

mylib_64plus_be.lib -mv64plus --endian=big

mylib_64plus_le.lib -mv64plus --endian=little

Using the library information archiver, you can create an index library called mylib.lib from the above
libraries:
libinfo62 -o mylib.lib mylib_6200_be.lib mylib_6200_le.lib

mylib_64plus_be.lib mylib_64plus_le.lib

You can now specify mylib.lib as a library for the linker of an application. The linker uses the index library
to choose the appropriate version of the library to use. If the --issue_remarks option is specified before the
--run_linker option, the linker reports which library was chosen.

• Example 1 (ISA 64plus, little endian):
cl6x -mv64plus --endian=little --issue_remarks main.c -z -l lnk.cmd ./mylib.lib
<Linking>
remark: linking in "mylib_64plus_le.lib" in place of "mylib.lib"

• Example 2 (ISA 6700, big endian):
cl6x -mv6700 --endian=big --issue_remarks main.c -z -l lnk.cmd ./mylib.lib
<Linking>
remark: linking in "mylib_6200_be.lib" in place of "mylib.lib"

In Example 2, there was no version of the library for C6700, but a C6200 library was available and is
compatible, so it was used.

6.5.3 Listing the Contents of an Index Library

The archiver’s -t option can be used on an index library to list the archives indexed by an index library:
ar6x t mylib.lib

SIZE DATE FILE NAME
-------- ------------------------ -----------------

119 Wed Feb 03 12:45:22 2010 mylib_6200_be.lib
119 Wed Feb 03 12:45:22 2010 mylib_6200_le.lib
119 Wed Feb 03 12:45:22 2010 mylib_64plus_be.lib
119 Wed Feb 03 12:45:22 2010 mylib_64plus_le.lib
0 Wed Sep 30 12:45:22 2009 __TI_$$LIBINFO

The indexed object file libraries have an additional .libinfo extension in the archiver listing. The
__TI_$$LIBINFO member is a special member that designates mylib.lib as an index library, rather than a
regular library.

If the archiver’s -d command is used on an index library to delete a .libinfo member, the linker will no
longer choose the corresponding library when the index library is specified.

Using any other archiver option with an index library, or using -d to remove the __TI_$$LIBINFO member,
results in undefined behavior, and is not supported.

6.5.4 Requirements

You must follow these requirements to use library index files:

• At least one of the application’s object files must appear on the linker command line before the index
library.

• Each object file library specified as input to the library information archiver must only contain object file
members that are built with the same build options.

167SPRU186V–July 2011 Archiver Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Library Information Archiver Description www.ti.com

• The linker expects the index library and all of the libraries it indexes to be in a single directory.

168 Archiver Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 7
SPRU186V–July 2011

Linker Description

The TMS320C6000 linker can be used to create a static executable or dynamic object module by
combining object modules. This chapter describes the linker options, directives, and statements used to
create static executables and dynamic object modules. Object libraries, command files, and other key
concepts are discussed as well.

The concept of sections is basic to linker operation; Chapter 2 discusses the object module sections in
detail.

Topic ... Page

7.1 Linker Overview .. 170
7.2 The Linker's Role in the Software Development Flow ... 171
7.3 Invoking the Linker .. 172
7.4 Linker Options .. 173
7.5 Linker Command Files ... 195
7.6 Object Libraries ... 229
7.7 Default Allocation Algorithm ... 230
7.8 Linker-Generated Copy Tables .. 231
7.9 Partial (Incremental) Linking ... 244
7.10 Linking C/C++ Code ... 245
7.11 Linker Example ... 248
7.12 Dynamic Linking with the C6000 Code Generation Tools 251

169SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Overview www.ti.com

7.1 Linker Overview

The TMS320C6000 linker allows you to configure system memory by allocating output sections efficiently
into the memory map. As the linker combines object files, it performs the following tasks:

• Allocates sections into the target system's configured memory

• Relocates symbols and sections to assign them to final addresses

• Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address
binding. The language supports expression assignment and evaluation. You configure system memory by
defining and creating a memory model that you design. Two powerful directives, MEMORY and
SECTIONS, allow you to:

• Allocate sections into specific areas of memory

• Combine object file sections

• Define or redefine global symbols at link time

170 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

C/C++
source

files

C/C++
compiler

Assembler
source

Assembler

Executable
object file

Debugging
toolsLibrary-build

process

Run-time-
support
library

Archiver

Archiver

Macro
library

Absolute lister

Hex-conversion
utility

Cross-reference
lister

Object file
utilities

C6000

Linker

Linear
assembly

Assembly
optimizer

Assembly
optimized

file

Macro
source

files

Object
files

EPROM
programmer

Library of
object
files

www.ti.com The Linker's Role in the Software Development Flow

7.2 The Linker's Role in the Software Development Flow

Figure 7-1 illustrates the linker's role in the software development process. The linker accepts several
types of files as input, including object files, command files, libraries, and partially linked files. The linker
creates an executable object module that can be downloaded to one of several development tools or
executed by a TMS320C6000 device.

Figure 7-1. The Linker in the TMS320C6000 Software Development Flow

171SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Invoking the Linker www.ti.com

7.3 Invoking the Linker

The general syntax for invoking the linker is:

cl6x --run_linker [options] filename1 filenamen

cl6x --run_linker is the command that invokes the linker. The --run_linker option's short form is
-z.

options can appear anywhere on the command line or in a link command file. (Options
are discussed in Section 7.4.)

filename 1, filename n can be object files, link command files, or archive libraries. The default
extension for all input files is .obj; any other extension must be explicitly
specified. The linker can determine whether the input file is an object or ASCII
file that contains linker commands. The default output filename is a.out, unless
you use the --output_file option to name the output file.

There are two methods for invoking the linker:

• Specify options and filenames on the command line. This example links two files, file1.obj and file2.obj,
and creates an output module named link.out.
cl6x --run_linker file1.obj file2.obj --output_file=link.out

• Put filenames and options in a link command file. Filenames that are specified inside a link command
file must begin with a letter. For example, assume the file linker.cmd contains the following lines:
--output_file=link.out file1.obj file2.obj

Now you can invoke the linker from the command line; specify the command filename as an input file:
cl6x --run_linker linker.cmd

When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:
cl6x --run_linker --map_file=link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters the filename on the
command line, so it links the files in this order: file1.obj, file2.obj, and file3.obj. This example creates an
output file called link.out and a map file called link.map.

For information on invoking the linker for C/C++ files, see Section 7.10.

172 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

7.4 Linker Options

Linker options control linking operations. They can be placed on the command line or in a command file.
Linker options must be preceded by a hyphen (-). Options can be separated from arguments (if they have
them) by an optional space. Table 7-1 summarizes the linker options.

Table 7-1. Basic Options Summary

Option Alias Description Section

--output_file -o Names the executable output module. The default filename is a.out. Section 7.4.20

--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 7.4.15
places the listing in filename

--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size bytes and Section 7.4.11
defines a global symbol that specifies the heap size. Default = 1K bytes

--stack_size -stack Sets C system stack size to size bytes and defines a global symbol that Section 7.4.26
specifies the stack size. Default = 1K bytes

Table 7-2. Command File Preprocessing Options Summary

Option Alias Description Section

--define Predefines name as a preprocessor macro. Section 7.4.8

--undefine Removes the preprocessor macro name. Section 7.4.8

--disable_pp Disables preprocessing for command files Section 7.4.8

Table 7-3. Diagnostic Options Summary

Option Alias Description Section

--diag_error Categorizes the diagnostic identified by num as an error Section 7.4.5

--diag_remark Categorizes the diagnostic identified by num as a remark Section 7.4.5

--diag_suppress Suppresses the diagnostic identified by num Section 7.4.5

--diag_warning Categorizes the diagnostic identified by num as a warning Section 7.4.5

--display_error_number Displays a diagnostic's identifiers along with its text Section 7.4.5

--issue_remarks Issues remarks (nonserious warnings) Section 7.4.5

--no_demangle Disables demangling of symbol names in diagnostics Section 7.4.17

--no_warnings Suppresses warning diagnostics (errors are still issued) Section 7.4.5

--set_error_limit Sets the error limit to num. The linker abandons linking after this number of Section 7.4.5
errors. (The default is 100.)

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap Section 7.4.5

--warn_sections -w Displays a message when an undefined output section is created Section 7.4.31

Table 7-4. File Search Path Options Summary

Option Alias Description Section

--library -l Names an archive library or link command filename as linker input Section 7.4.13

--search_path Alters library-search algorithms to look in a directory named with pathname Section 7.4.13.1-I
before looking in the default location. This option must appear before the
--library option.

--disable_auto_rts Disables the automatic selection of a run-time-support library Section 7.4.6

--priority -priority Satisfies unresolved references by the first library that contains a definition for Section 7.4.13.3
that symbol

--reread_libs -x Forces rereading of libraries, which resolves back references Section 7.4.13.3

173SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

Table 7-5. Linker Output Options Summary

Option Alias Description Section

--output_file -o Names the executable output module. The default filename is a.out. Section 7.4.20

--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 7.4.15
places the listing in filename

--absolute_exe -a Produces an absolute, executable module. This is the default; if neither Section 7.4.2.1
--absolute_exe nor --relocatable is specified, the linker acts as if
--absolute_exe were specified.

--mapfile_contents Controls the information that appears in the map file. Section 7.4.16

--relocatable -r Produces a nonexecutable, relocatable output module Section 7.4.2.2

--rom Create a ROM object

--run_abs -abs Produces an absolute listing file Section 7.4.24

--xml_link_info Generates a well-formed XML file containing detailed information about the Section 7.4.32
result of a link

Table 7-6. Symbol Management Options Summary

Option Alias Description Section

--entry_point -e Defines a global symbol that specifies the primary entry point for the output Section 7.4.9
module

--globalize Changes the symbol linkage to global for symbols that match pattern Section 7.4.14

--hide Hides global symbols that match pattern Section 7.4.12

--localize Changes the symbol linkage to local for symbols that match pattern Section 7.4.14

--make_global -g Makes symbol global (overrides -h) Section 7.4.14.2

--make_static -h Makes all global symbols static Section 7.4.14.1

--no_sym_merge -b Disables merge of symbolic debugging information in COFF object files Section 7.4.18

--no_sym_table -s Strips symbol table information and line number entries from the output Section 7.4.19
module

--retain Retains a list of sections that otherwise would be discarded Section 7.4.23

--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions Section 7.4.25

--symbol_map Maps symbol references to a symbol definition of a different name Section 7.4.28

--undef_sym -u Places an unresolved external symbol into the output module's symbol table Section 7.4.30

--unhide Reveals (un-hides) global symbols that match pattern Section 7.4.12

Table 7-7. Run-Time Environment Options Summary

Option Alias Description Section

--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size bytes and Section 7.4.11
defines a global symbol that specifies the heap size. Default = 1K bytes

--stack_size -stack Sets C system stack size to size bytes and defines a global symbol that Section 7.4.26
specifies the stack size. Default = 1K bytes

--arg_size --args Allocates memory to be used by the loader to pass arguments Section 7.4.3

--fill_value -f Sets default fill values for holes within output sections; fill_value is a 32-bit Section 7.4.10
constant

--ram_model -cr Initializes variables at load time Section 7.4.22

--rom_model -c Autoinitializes variables at run time Section 7.4.22

--trampolines Generates far call trampolines; on by default Section 7.4.29

174 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

Table 7-8. Link-Time Optimization Options Summary

Option Alias Description Section

--cinit_compression Specifies the type of compression to apply to the c auto initialization data Section 7.4.4
(default is rle)

--compress_dwarf Aggressively reduces the size of DWARF information from input object files

--copy_compression Compresses data copied by linker copy tables Section 7.4.4

--unused_section_elimination Eliminates sections that are not needed in the executable module; on by
default

Table 7-9. Dynamic Linking Options Summary

Option Alias Description Section

--dsbt_index Specifies the Data Segment Base Table (DSBT) index to be assumed for the Section 7.12.5.3
dynamic shared object or dynamic library being linked

--dsbt_size Specifies the number of entries to be reserved for the Data Segment Base Section 7.12.5.3
Table (DSBT)

--dynamic Generates a bare-metal dynamic executable or library (argument is optional; if Section 7.12.5.3
no argument is specified, then a dynamic executable (exe) is generated)

--export Exports the specified function symbol (sym) Section 7.12.4.1

--fini Specifies function symbol (sym) of the termination code Section 7.12.5.3

--import Imports the specified symbol Section 7.12.5.1

--init Specifies the function symbol (sym) of the initialization code Section 7.12.5.3

--linux Generates code for Linux Section 7.12.5.3

--pic Generates position independent addressing for a shared object. Default is Section 7.12.5.3
near.

--rpath Adds specified directory to the beginning of the dynamic library search path Section 7.12.5.3

--runpath Adds specified directory to the end of the dynamic library search path Section 7.12.5.3

--shared Generates an ELF dynamically shared object (DSO) Section 7.12.5.3

--soname Specifies the name to be associated with this linked dynamic output; this name Section 7.12.5.3
is stored in the file's dynamic table

--sysv Generates SysV ELF output file Section 7.12.5.3

Table 7-10. Miscellaneous Options Summary

Option Alias Description Section

--disable_clink -j Disables conditional linking of COFF object modules

--linker_help -help Displays information about syntax and available options –
--minimize_trampolines Selects the trampoline minimization algorithm (argument is optional; algoriithm Section 7.4.29.3

is postorder by default)

--preferred_order Prioritizes placement of functions Section 7.4.21

--strict_compatibility Performs more conservative and rigorous compatibility checking of input object Section 7.4.27
files

--trampoline_min_spacing When trampoline reservations are spaced more closely than the specified limit, Section 7.4.29.4
tries to make them adjacent

--zero_init Controls preinitialization of uninitialized variables. Default is on. Section 7.4.33

175SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

7.4.1 Wild Cards in File, Section, and Symbol Patterns

The linker allows file, section, and symbol names to be specified using the asterisk (*) and question mark
(?) wild cards. Using * matches any number of characters and using ? matches a single character. Using
wild cards can make it easier to handle related objects, provided they follow a suitable naming convention.

For example:
mp3*.obj /* matches anything .obj that begins with mp3 */
task?.o* /* matches task1.obj, task2.obj, taskX.o55, etc. */

SECTIONS
{

.fast_code: { *.obj(*fast*) } > FAST_MEM

.vectors : { vectors.obj(.vector:part1:*) > 0xFFFFFF00

.str_code : { rts*.lib<str*.obj>(.text) } > S1ROM
}

7.4.2 Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the
symbol's address changes. The linker supports two options (--absolute_exe and --relocatable) that allow
you to produce an absolute or a relocatable output module. The linker also supports a third option (-ar)
that allows you to produce an executable, relocatable output module.

When the linker encounters a file that contains no relocation or symbol table information, it issues a
warning message (but continues executing). Relinking an absolute file can be successful only if each input
file contains no information that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the linker created it).

7.4.2.1 Producing an Absolute Output Module (--absolute_exe option)

When you use the --absolute_exe option without the --relocatable option, the linker produces an absolute,
executable output module. Absolute files contain no relocation information. Executable files contain the
following:

• Special symbols defined by the linker (see Section 7.5.8.4)

• An optional header that describes information such as the program entry point

• No unresolved references

The following example links file1.obj and file2.obj and creates an absolute output module called a.out:
cl6x --run_linker --absolute_exe file1.obj file2.obj

The --absolute_exe and --relocatable Options

NOTE: If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you
specified --absolute_exe.

7.4.2.2 Producing a Relocatable Output Module (--relocatable option)

When you use the -ar option, the linker retains relocation entries in the output module. If the output
module is relocated (at load time) or relinked (by another linker execution), use --relocatable to retain the
relocation entries.

The linker produces a file that is not executable when you use the --relocatable option without the
--absolute_exe option. A file that is not executable does not contain special linker symbols or an optional
header. The file can contain unresolved references, but these references do not prevent creation of an
output module.

This example links file1.obj and file2.obj and creates a relocatable output module called a.out:
cl6x --run_linker --relocatable file1.obj file2.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will
be relinked with other files is called partial linking. For more information, see Section 7.9.)

176 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

7.4.2.3 Producing an Executable, Relocatable Output Module (-ar Option)

If you invoke the linker with both the --absolute_exe and --relocatable options, the linker produces an
executable, relocatable object module. The output file contains the special linker symbols, an optional
header, and all resolved symbol references; however, the relocation information is retained.

This example links file1.obj and file2.obj and creates an executable, relocatable output module called
xr.out:
cl6x --run_linker -ar file1.obj file2.obj --output_file=xr.out

7.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)

The --arg_size option instructs the linker to allocate memory to be used by the loader to pass arguments
from the command line of the loader to the program. The syntax of the --arg_size option is:

--arg_size= size

The size is a number representing the number of bytes to be allocated in target memory for command-line
arguments.

By default, the linker creates the __c_args__ symbol and sets it to -1. When you specify --arg_size=size,
the following occur:

• The linker creates an uninitialized section named .args of size bytes.

• The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c_args__ symbol to determine
whether and how to pass arguments from the host to the target program. See the TMS320C6000
Optimizing Compiler User's Guide for information about the loader.

7.4.4 Compression (--cinit_compression and --copy_compression Option)

By default, the linker does not compress data. There are two options that specify compression through the
linker.

The ELF mode --cinit_compression option specifies the compression type the linker applies to the C
autoinitialization data. The default is rle.

Overlays can be managed by using linker-generated copy tables. To save ROM space the linker can
compress the data copied by the copy tables. The compressed data is decompressed during copy. The
--copy_compression option controls the compression of the copy data tables.

The syntax for the options are:

--cinit_compression[=compression_kind]

--copy_compression[=compression_kind]

The compression_kind can be one of the following types:

• off. Don't compress the data.

• rle. Compress data using Run Length Encoding.

• lzss. Compress data using Lempel-Ziv Storer and Symanski compression.

177SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

7.4.5 Control Linker Diagnostics

The linker uses certain C/C++ compiler options to control linker-generated diagnostics. The diagnostic
options must be specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_error=num to recategorize the
diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

--diag_remark=num Categorizes the diagnostic identified by num as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_remark=num to recategorize
the diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

--diag_suppress=num Suppresses the diagnostic identified by num. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_suppress=num to suppress the
diagnostic. You can only suppress discretionary diagnostics.

--diag_warning=num Categorizes the diagnostic identified by num as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_warning=num to recategorize
the diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

--display_error_number Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and
--diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the TMS320C6000 Optimizing Compiler User's Guide
for more information on understanding diagnostic messages.

--issue_remarks Issues remarks (nonserious warnings), which are suppressed by default.
--no_warnings Suppresses warning diagnostics (errors are still issued).
--set_error_limit=num Sets the error limit to num, which can be any decimal value. The linker

abandons linking after this number of errors. (The default is 100.)
--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap

and indicate the position of the error in the source line

7.4.6 Disable Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support library. See the
TMS320C6000 Optimizing Compiler User's Guide for details on the automatic selection process.

7.4.7 Controlling Unreferenced and Unused Sections

7.4.7.1 Disable Conditional Linking (--disable_clink Option)

The --disable_clink option disables removal of unreferenced sections in COFF object modules. Only
sections marked as candidates for removal with the .clink assembler directive are affected by conditional
linking. See Conditionally Leave Section Out of Object Module Output for details on setting up conditional
linking using the .clink directive, which is available under ELF as well as COFF.

178 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

7.4.7.2 Do Not Remove Unused Sections (--unused_section_elimination Option)

In order to minimize the foot print, the ELF linker does not include a section that is not needed to resolve
any references in the final executable. Use --unused_section_elimination=off to disable this optimization.
The syntax for the option is:

--unused_section_elimination[=on|off]

The linker default behavior is equivalent to --unused_section_elimination=on.

7.4.8 Link Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses link command files using a standard C preprocessor. Therefore, the command
files can contain well-known preprocessing directives such as #define, #include, and #if / #endif.

Three linker options control the preprocessor:

--disable_pp Disables preprocessing for command files
--define=name[=val] Predefines name as a preprocessor macro
--undefine=name Removes the macro name

The compiler has --define and --undefine options with the same meanings. However, the linker options are
distinct; only --define and --undefine options specified after --run_linker are passed to the linker. For
example:
cl6x --define=FOO=1 main.c --run_linker --define=BAR=2 lnk.cmd

The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child in the
usual way (that is, macros defined in the parent are visible in the child). However, when a command file is
invoked other than through #include, either on the command line or by the typical way of being named in
another command file, preprocessing context is not carried into the nested file. The exception to this is
--define and --undefine options, which apply globally from the point they are encountered. For example:
--define GLOBAL
#define LOCAL

#include "incfile.cmd" /* sees GLOBAL and LOCAL */
nestfile.cmd /* only sees GLOBAL */

Two cautions apply to the use of --define and --undefine in command files. First, they have global effect as
mentioned above. Second, since they are not actually preprocessing directives themselves, they are
subject to macro substitution, probably with unintended consequences. This effect can be defeated by
quoting the symbol name. For example:
--define MYSYM=123
--undefine MYSYM /* expands to --undefine 123 (!) */
--undefine "MYSYM" /* ahh, that's better */

The linker uses the same search paths to find #include files as it does to find libraries. That is, #include
files are searched in the following places:

1. If the #include file name is in quotes (rather than <brackets>), in the directory of the current file

2. In the list of directories specified with --Iibrary options or environment variables (see Section 7.4.13)

There are two exceptions: relative pathnames (such as "../name") always search the current directory; and
absolute pathnames (such as "/usr/tools/name") bypass search paths entirely.

The linker has the standard built-in definitions for the macros __FILE__, __DATE__, and __TIME__. It
does not, however, have the compiler-specific options for the target (__.TMS320C6000__), version
(__TI_COMPILER_VERSION__), run-time model, and so on.

179SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

7.4.9 Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader loads
a program into target memory, the program counter (PC) must be initialized to the entry point; the PC then
points to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the order in
which the linker tries to use them. If you use one of the first three values, it must be an external symbol in
the symbol table.

• The value specified by the --entry_point option. The syntax is:

--entry_point= global_symbol

where global_symbol defines the entry point and must be defined as an external symbol of the input
files. The external symbol name of C or C++ objects may be different than the name as declared in the
source language; refer to the TMS320C6000 Optimizing Compiler User's Guide.

• The value of symbol _c_int00 (if present). The _c_int00 symbol must be the entry point if you are
linking code produced by the C compiler.

• The value of symbol _main (if present)

• 0 (default value)

This example links file1.obj and file2.obj. The symbol begin is the entry point; begin must be defined as
external in file1 or file2.
cl6x --run_linker --entry_point=begin file1.obj file2.obj

7.4.10 Set Default Fill Value (--fill_value Option)

The --fill_value option fills the holes formed within output sections. The syntax for the option is:

--fill_value= value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --fill_value, the
linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
cl6x --run_linker --fill_value=0xABCDABCD file1.obj file2.obj

7.4.11 Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool used by
malloc(). You can set the size of this memory pool at link time by using the --heap_size option. The syntax
for the --heap_size option is:

--heap_size= size

The size must be a constant. This example defines a 4K byte heap:
cl6x --run_linker --heap_size=0x1000 /* defines a 4k heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in an input file.

The linker also creates a global symbol __SYSMEM_SIZE and assigns it a value equal to the size of the
heap. The default size is 1K bytes.

For more information about C/C++ linking, see Section 7.10.

180 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

7.4.12 Hiding Symbols

Symbol hiding prevents the symbol from being listed in the output file's symbol table. While localization is
used to prevent name space clashes in a link unit, symbol hiding is used to obscure symbols which should
not be visible outside a link unit. Such symbol’s names appear only as empty strings or “no name” in
object file readers. The linker supports symbol hiding through the --hide and --unhide options.

The syntax for these options are:

--hide=' pattern '

--unhide=' pattern '

The pattern is a string with optional wildcards ? or *. Use ? to match a single character and use * to match
zero or more characters.

The --hide option hides global symbols which have a linkname matching the pattern. It hides the symbols
matching the pattern by changing the name to an empty string. A global symbol which is hidden is also
localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by the --hide
option. The --unhide option excludes symbols that match pattern from symbol hiding provided the pattern
defined by --unhide is more restrictive than the pattern defined by --hide.

These options have the following properties:

• The --hide and --unhide options can be specified more than once on the command line.

• The order of --hide and --unhide has no significance.

• A symbol is matched by only one pattern defined by either --hide or --unhide.

• A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

• It is an error if a symbol matches patterns from --hide and --unhide and if one does not supersede
other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

• These options affect final and partial linking.

In map files these symbols are listed under the Hidden Symbols heading.

181SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

7.4.13 Alter the Library Search Algorithm (--library Option, --search_path Option, and
C6X_C_DIR Environment Variable)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for
the file in the current directory. For example, suppose the current directory contains the library object.lib.
Assume that this library defines symbols that are referenced in the file file1.obj. This is how you link the
files:
cl6x --run_linker file1.obj object.lib

If you want to use a file that is not in the current directory, use the --library linker option. The --library
option's short form is -l. The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, an object file, or link command file. You can specify up to 128
search paths.

The --library option is not required when one or more members of an object library are specified for input
to an output section. For more information about allocating archive members, see Section 7.5.4.5.

You can augment the linker's directory search algorithm by using the --search_path linker option or the
C6X_C_DIR environment variable. The linker searches for object libraries and command files in the
following order:

1. It searches directories named with the --search_path linker option. The --search_path option must
appear before the --Iibrary option on the command line or in a command file.

2. It searches directories named with C6X_C_DIR.

3. If C6X_C_DIR is not set, it searches directories named with the assembler's C6X_A_DIR environment
variable.

4. It searches the current directory.

7.4.13.1 Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path option's
short form is -I. The syntax for this option is:

--search_path= pathname

The pathname names a directory that contains input files.

When the linker is searching for input files named with the --library option, it searches through directories
named with --search_path first. Each --search_path option specifies only one directory, but you can have
several --search_path options per invocation. When you use the --search_path option to name an
alternate directory, it must precede any --library option used on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in ld and ld2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set environment
variable, and how to use both libraries during a link. Select the row for your operating system:

Operating System Enter

cl6x --run_linker f1.obj f2.obj --search_path=/ld --search_path=/ld2

UNIX (Bourne shell) --library=r.lib --library=lib2.lib

cl6x --run_linker f1.obj f2.obj --search_path=\ld --search_path=\ld2

Windows --library=r.lib --library=lib2.lib

182 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

7.4.13.2 Name an Alternate Library Directory (C6X_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The linker uses an
environment variable named C6X_C_DIR to name alternate directories that contain object libraries. The
command syntaxes for assigning the environment variable are:

Operating System Enter

UNIX (Bourne shell) C6X_C_DIR=" pathname1; pathname2; . . . " ; export C6X_C_DIR

Windows set C6X_C_DIR= pathname1 ; pathname2 ; . . .

The pathnames are directories that contain input files. Use the --library linker option on the command line
or in a command file to tell the linker which library or link command file to search for. The pathnames must
follow these constraints:

• Pathnames must be separated with a semicolon.

• Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:
set C6X_C_DIR= c:\path\one\to\tools ; c:\path\two\to\tools

• Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set C6X_C_DIR=c:\first path\to\tools;d:\second path\to\tools

In the example below, assume that two archive libraries called r.lib and lib2.lib reside in ld and ld2
directories. The table below shows how to set the environment variable, and how to use both libraries
during a link. Select the row for your operating system:

Operating System Invocation Command

C6X_C_DIR="/ld ;/ld2"; export C6X_C_DIR;

UNIX (Bourne shell) cl6x --run linker f1.obj f2.obj --library=r.lib --library=lib2.lib

C6X_C_DIR=\ld;\ld2

Windows cl6x --run linker f1.obj f2.obj --library=r.lib --library=lib2.lib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter

UNIX (Bourne shell) unset C6X_C_DIR

Windows set C6X_C_DIR=

The assembler uses an environment variable named C6X_A_DIR to name alternate directories that
contain copy/include files or macro libraries. If C6X_C_DIR is not set, the linker searches for object
libraries in the directories named with C6X_A_DIR. For information about C6X_A_DIR, see Section 3.5.2.
For more information about object libraries, see Section 7.6.

7.4.13.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:

• Reread libraries if you cannot resolve a symbol reference (--reread_libs).

• Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on
the command line or in the command file. When an archive is read, any members that resolve references
to undefined symbols are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads libraries
until no more references can be resolved. Linking using --reread_libs may be slower, so you should use it
only as needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a
reference to a symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the
libraries twice, as in:

183SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

cl6x --run_linker --library=a.lib --library=b.lib --library=a.lib

or you can force the linker to do it for you:
cl6x --run_linker --reread_libs --library=a.lib --library=b.lib

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For
example:
objfile references A
lib1 defines B
lib2 defines A, B; obj defining A references B

% cl6x --run_linker objfile lib1 lib2

Under the existing model, objfile resolves its reference to A in lib2, pulling in a reference to B, which
resolves to the B in lib2.

Under --priority, objfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved
by searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in
other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rts6200.lib without
providing a full replacement for rts6200.lib. Using --priority and linking your new library before rts6200.lib
guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with DSP/BIOS where situations like the one
illustrated above occur.

7.4.14 Change Symbol Localization

Symbol localization changes symbol linkage from global to local (static). This is used to obscure global
symbols in a library which should not be visible outside the library, but must be global because they are
accessed by several modules in the library. The linker supports symbol localization through the --localize
and --globalize linker options.

The syntax for these options are:

--localize=' pattern '

--globalize=' pattern '

The pattern is a string with optional wild cards ? or *. Use ? to match a single character and use * to
match zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The
--globalize option only affects symbols that are localized by the --localize option. The --globalize option
excludes symbols that match the pattern from symbol localization, provided the pattern defined by
--globalize is more restrictive than the pattern defined by --localize.

Specifying C/C++ Symbols with --localize and --globalize

NOTE: For COFF ABI, the compiler prepends an underscore _ to the beginning of all C/C++
identifiers. That is, for a function named foo2(), foo2() is prefixed with _ and _foo2 becomes
the link-time symbol. The --localize and --globalize options accept the link-time symbols.
Thus, you specify --localize='_foo2' to localize the C function _foo2().

For EABI, the link-time symbol is the same as the C/C++ identifier name.

These options have the following properties:

• The --localize and --globalize options can be specified more than once on the command line.

• The order of --localize and --globalize options has no significance.

• A symbol is matched by only one pattern defined by either --localize or --globalize.

184 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

• A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

• It is an error if a symbol matches patterns from --localize and --globalize and if one does not supersede
other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

• These options affect final and partial linking.

In map files these symbols are listed under the Localized Symbols heading.

7.4.14.1 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked
modules. By making global symbols static, global symbols are essentially hidden. This allows external
symbols with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to
the module in which they are defined, so no external references are possible. For example, assume
file1.obj and file2.obj both define global symbols called EXT. By using the --make_static option, you can
link these files without conflict. The symbol EXT defined in file1.obj is treated separately from the symbol
EXT defined in file2.obj.
cl6x --run_linker --make_static file1.obj file2.obj

7.4.14.2 Make a Symbol Global (--make_global Option)

The --make_static option makes all global symbols static. If you have a symbol that you want to remain
global and you use the --make_static option, you can use the --make_global option to declare that symbol
to be global. The --make_global option overrides the effect of the --make_static option for the symbol that
you specify. The syntax for the --make_global option is:

--make_global= global_symbol

7.4.15 Create a Map File (--map_file Option)

The syntax for the --map_file option is:

--map_file= filename

The linker map describes:

• Memory configuration

• Input and output section allocation

• Linker-generated copy tables

• Trampolines

• The addresses of external symbols after they have been relocated

• Hidden and localized symbols

The map file contains the name of the output module and the entry point; it can also contain up to three
tables:

• A table showing the new memory configuration if any nondefault memory is specified (memory
configuration). The table has the following columns; this information is generated on the basis of the
information in the MEMORY directive in the link command file:

– Name. This is the name of the memory range specified with the MEMORY directive.

– Origin. This specifies the starting address of a memory range.

– Length. This specifies the length of a memory range.

– Unused. This specifies the total amount of unused (available) memory in that memory area.

– Attributes. This specifies one to four attributes associated with the named range:

185SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

R specifies that the memory can be read.
W specifies that the memory can be written to.
X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

For more information about the MEMORY directive, see Section 7.5.3.

• A table showing the linked addresses of each output section and the input sections that make up the
output sections (section allocation map). This table has the following columns; this information is
generated on the basis of the information in the SECTIONS directive in the link command file:

– Output section. This is the name of the output section specified with the SECTIONS directive.

– Origin. The first origin listed for each output section is the starting address of that output section.
The indented origin value is the starting address of that portion of the output section.

– Length. The first length listed for each output section is the length of that output section. The
indented length value is the length of that portion of the output section.

– Attributes/input sections. This lists the input file or value associated with an output section. If the
input section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

For more information about the SECTIONS directive, see Section 7.5.4.

• A table showing each external symbol and its address sorted by symbol name.

• A table showing each external symbol and its address sorted by symbol address.

This following example links file1.obj and file2.obj and creates a map file called map.out:
cl6x --run_linker file1.obj file2.obj --map_file=map.out

Example 7-26 shows an example of a map file.

7.4.16 Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The syntax
for the --mapfile_contents option is:

--mapfile_contents= filter[, filter]

When the --map_file option is specified, the linker produces a map file containing information about
memory usage, placement information about sections that were created during a link, details about
linker-generated copy tables, and symbol values.

The new --mapfile_contents option provides a mechanism for you to control what information is included in
or excluded from a map file. When you specify --mapfile_contents=help from the command line, a help
screen listing available filter options is displayed.

The following filter options are available:

Attribute Description Default State

copytables Copy tables On

entry Entry point On

load_addr Display load addresses Off

memory Memory ranges On

sections Sections On

sym_defs Defined symbols per file Off

sym_name Symbols sorted by name On

sym_runaddr Symbols sorted by run address On

all Enables all attributes

none Disables all attributes

186 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list of display
attributes. When prefixed with the word no, an attribute is disabled instead of enabled. For example:
--mapfile_contents=copytables,noentry
--mapfile_contents=all,nocopytables
--mapfile_contents=none,entry

187SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

By default, those sections that are currently included in the map file when the --map_file option is specified
are included. The filters specified in the --mapfile_contents options are processed in the order that they
appear in the command line. In the third example above, the first filter, none, clears all map file content.
The second filter, entry, then enables information about entry points to be included in the generated map
file. That is, when --mapfile_contents=none,entry is specified, the map file contains only information about
entry points.

There are two new filters included with the --mapfile_contents option, load_addr and sym_defs. These are
both disabled by default. If you turn on the load_addr filter, the map file includes the load address of
symbols that are included in the symbol list in addition to the run address (if the load address is different
from the run address).

The sym_defs filter can be used to include information about all static and global symbols defined in an
application on a file by file basis. You may find it useful to replace the sym_name and sym_runaddr
sections of the map file with the sym_defs section by specifying the following --mapfile_contents option:
--mapfile_contents=nosym_name,nosym_runaddr,sym_defs

7.4.17 Disable Name Demangling (--no_demangle)

By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.obj

The --no_demangle option disables the demangling of symbol names in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.obj

7.4.18 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)

By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate
information is commonly generated when a C program is compiled for debugging. For example:
-[header.h]-
typedef struct
{

<define some structure members>
} XYZ;

-[f1.c]-
#include "header.h"
...

-[f2.c]-
#include "header.h"
...

When these files are compiled for debugging, both f1.obj and f2.obj have symbolic debugging entries to
describe type XYZ. For the final output file, only one set of these entries is necessary. The linker
eliminates the duplicate entries automatically.

Use the COFF only --no_sym_merge option if you want the linker to keep such duplicate entries in COFF
object files. Using the --no_sym_merge option has the effect of the linker running faster and using less
host memory during linking, but the resulting executable file may be very large due to duplicated debug
information.

188 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

7.4.19 Strip Symbolic Information (--no_sym_table Option)

The --no_sym_table option creates a smaller output module by omitting symbol table information and line
number entries. The --no_sym_table option is useful for production applications when you do not want to
disclose symbolic information to the consumer.

This example links file1.obj and file2.obj and creates an output module, stripped of line numbers and
symbol table information, named nosym.out:
cl6x --run_linker --output_file=nosym.out --no_sym_table file1.obj file2.obj

Using the --no_sym_table option limits later use of a symbolic debugger.

Stripping Symbolic Information

NOTE: The --no_sym_table option is deprecated. To remove symbol table information, use the
strip6x utility as described in Section 10.4.

7.4.20 Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for
the output module, the linker gives it the default name a.out. If you want to write the output module to a
different file, use the --output_file option. The syntax for the --output_file option is:

--output_file= filename

The filename is the new output module name.

This example links file1.obj and file2.obj and creates an output module named run.out:
cl6x --run_linker --output_file=run.out file1.obj file2.obj

7.4.21 Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which
--preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order=function specification

Refer to the TMS320C6000 Optimizing Compiler User's Guide for details on the program cache layout tool
which is impacted most by --preferred_option.

7.4.22 C Language Options (--ram_model and --rom_model Options)

The --ram_model and --rom_model options cause the linker to use linking conventions that are required by
the C compiler.

• The --ram_model option tells the linker to initialize variables at load time.

• The --rom_model option tells the linker to autoinitialize variables at run time.

For more information, see Section 7.10, Section 7.10.4, and Section 7.10.5.

189SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

7.4.23 Retain Discarded Sections (--retain Option)

When --unused_section_elimination is on, the ELF linker does not include a section in the final link if it is
not needed in the executable to resolve references. The --retain option tells the linker to retain a list of
sections that would otherwise not be retained. This option accepts the wildcards '*' and '?'. When
wildcards are used, the argument should be in quotes. The syntax for this option is:

--retain=sym_or_scn_spec

The --retain option take one of the following forms:

• --retain= symbol_spec

Specifying the symbol format retains sections that define symbol_spec. For example, this code retains
sections that define symbols that start with init:
--retain='init*'

You cannot specify --retain='*'.

• --retain= file_spec(scn_spec[, scn_spec, ...]

Specifying the file format retains sections that match one or more scn_spec from files matching the
file_spec. For example, this code retains .initvec sections from all input files:
--retain='init*'

You can specify --retain='*(*)' to retain all sections from all input files. However, this does not prevent
sections from library members from being optimized out.

• --retain= ar_spec<mem_spec, [mem_spec, ...>(scn_spec[, scn_spec, ...]

Specifying the archive format retains sections matching one or more scn_spec from members
matching one or more mem_spec from archive files matching ar_spec. For example, this code retains
the .text sections from printf.obj in the rts64plus_eabi.lib library:
--retain=rts64plus_eabi.lib<printf.obj>(.text)

If the library is specified with the --library option (--library=rts64plus_eabi.lib) the library search path is
used to search for the library. You cannot specify '*<*>(*)'.

7.4.24 Create an Absolute Listing File (--run_abs Option)

The --run_abs option produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

7.4.25 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol definitions to those
symbols that are actually included in the link. The scan does not consider absolute symbols or symbols
defined in COMDAT sections. The --scan_libraries option helps determine those symbols that were
actually chosen by the linker over other existing definitions of the same symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol reference to
a definition when multiple definitions are available in the libraries.

7.4.26 Define Stack Size (--stack_size Option)

The TMS320C6000 C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time
stack. You can set the size of this section in bytes at link time with the --stack_size option. The syntax for
the --stack_size option is:

--stack_size= size

The size must be a constant and is in bytes. This example defines a 4K byte stack:
cl6x --run_linker --stack_size=0x1000 /* defines a 4K heap (.stack section)*/

If you specified a different stack size in an input section, the input section stack size is ignored. Any
symbols defined in the input section remain valid; only the stack size is different.

190 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

When the linker defines the .stack section, it also defines a global symbol, __STACK_SIZE, and assigns it
a value equal to the size of the section. The default software stack size is 1K bytes.

7.4.27 Enforce Strict Compatibility (--strict_compatibility Option)

The linker performs more conservative and rigorous compatibility checking of input object files when you
specify the --strict_compatibility option. Using this option guards against additional potential compatibility
issues, but may signal false compatibility errors when linking in object files built with an older toolset, or
with object files built with another compiler vendor's toolset. To avoid issues with legacy libraries, the
--strict_compatibility option is turned off by default.

7.4.28 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name. Symbol
mapping allows functions to be overridden with alternate definitions. This feature can be used to patch in
alternate implementations, which provide patches (bug fixes) or alternate functionality. The syntax for the
--symbol_map option is:

--symbol_map= refname=defname

For example, the following code makes the linker resolve any references to foo by the definition
foo_patch:
--symbol_map='foo=foo_patch'

7.4.29 Generate Far Call Trampolines (--trampolines Option)

The C6000 device has PC-relative call and PC-relative branch instructions whose range is smaller than
the entire address space. When these instructions are used, the destination address must be near enough
to the instruction that the difference between the call and the destination fits in the available encoding bits.
If the called function is too far away from the calling function, the linker generates an error.

The alternative to a PC-relative call is an absolute call, which is often implemented as an indirect call: load
the called address into a register, and call that register. This is often undesirable because it takes more
instructions (speed- and size-wise) and requires an extra register to contain the address.

By default, the compiler generates near calls. The --trampolines option causes the linker to generate a
trampoline code section for each call that is linked out-of-range of its called destination. The trampoline
code section contains a sequence of instructions that performs a transparent long branch to the original
called address. Each calling instruction that is out-of-range from the called function is redirected to the
trampoline.

For example, in a section of C code the bar function calls the foo function. The compiler generates this
code for the function:
bar:

...
call foo ; call the function "foo"
...

If the foo function is placed out-of-range from the call to foo that is inside of bar, then with --trampolines
the linker changes the original call to foo into a call to foo_trampoline as shown:
bar:

...
call foo_trampoline ; call a trampoline for foo
...

The above code generates a trampoline code section called foo_trampoline, which contains code that
executes a long branch to the original called function, foo. For example:
foo_trampoline:

branch_long foo

Trampolines can be shared among calls to the same called function. The only requirement is that all calls
to the called function be linked near the called function's trampoline.

The syntax for this option is:

191SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

--trampolines[=on|off]

The default setting is on. For C6000, trampolines are turned on by default.

When the linker produces a map file (the --map_file option) and it has produced one or more trampolines,
then the map file will contain statistics about what trampolines were generated to reach which functions. A
list of calls for each trampoline is also provided in the map file.

The Linker Assumes B15 Contains the Stack Pointer

NOTE: Assembly language programmers must be aware that the linker assumes B15 contains the
stack pointer. The linker must save and restore values on the stack in trampoline code that it
generates. If you do not use B15 as the stack pointer, you should use the linker option that
disables trampolines, --trampolines=off. Otherwise, trampolines could corrupt memory and
overwrite register values.

7.4.29.1 Carrying Trampolines From Load Space to Run Space

It is sometimes useful to load code in one location in memory and run it in another. The linker provides the
capability to specify separate load and run allocations for a section. The burden of actually copying the
code from the load space to the run space is left to you.

A copy function must be executed before the real function can be executed in its run space. To facilitate
this copy function, the assembler provides the .label directive, which allows you to define a load-time
address. These load-time addresses can then be used to determine the start address and size of the code
to be copied. However, this mechanism will not work if the code contains a call that requires a trampoline
to reach its called function. This is because the trampoline code is generated at link time, after the
load-time addresses associated with the .label directive have been defined. If the linker detects the
definition of a .label symbol in an input section that contains a trampoline call, then a warning is
generated.

To solve this problem, you can use the START(), END(), and SIZE() operators (see Section 7.5.8.7).
These operators allow you to define symbols to represent the load-time start address and size inside the
link command file. These symbols can be referenced by the copy code, and their values are not resolved
until link time, after the trampoline sections have been allocated.

Here is an example of how you could use the START() and SIZE() operators in association with an output
section to copy the trampoline code section along with the code containing the calls that need trampolines:
SECTIONS
{ .foo : load = ROM, run = RAM, start(foo_start), size(foo_size)

{ x.obj(.text) }

.text: {} > ROM

.far : { -l=rts.lib(.text) } > FAR_MEM
}

A function in x.obj contains an run-time-support call. The run-time-support library is placed in far memory
and so the call is out-of-range. A trampoline section will be added to the .foo output section by the linker.
The copy code can refer to the symbols foo_start and foo_size as parameters for the load start address
and size of the entire .foo output section. This allows the copy code to copy the trampoline section along
with the original x.obj code in .text from its load space to its run space.

7.4.29.2 Disadvantages of Using Trampolines

An alternative method to creating a trampoline code section for a call that cannot reach its called function
is to actually modify the source code for the call. In some cases this can be done without affecting the size
of the code. However, in general, this approach is extremely difficult, especially when the size of the code
is affected by the transformation.

192 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Options

While generating far call trampolines provides a more straightforward solution, trampolines have the
disadvantage that they are somewhat slower than directly calling a function. They require both a call and a
branch. Additionally, while inline code could be tailored to the environment of the call, trampolines are
generated in a more general manner, and may be slightly less efficient than inline code.

7.4.29.3 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)

The --minimize_trampolines option attempts to place sections so as to minimize the number of far call
trampolines required, possibly at the expense of optimal memory packing. The syntax is:

--minimize_trampolines=postorder

The argument selects a heuristic to use. The postorder heuristic attempts to place functions before their
callers, so that the PC-relative offset to the callee is known when the caller is placed.

When a call is placed and the callee's address is unknown, the linker must provisionally reserve space for
a far call trampoline in case the callee turns out to be too far away. Even if the callee ends up being close
enough, the trampoline reservation can interfere with optimal placement for very large code sections. By
placing the callee first, its address is known when the caller is placed so the linker can definitively know if
a trampoline is required.

7.4.29.4 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)

When trampoline reservations are spaced more closely than the specified limit, use the
--trampoline_min_spacing option to try to make them adjacent. The syntax is:

--trampoline_min_spacing=size

A higher value minimizes fragmentation, but may result in more trampolines. A lower value may reduce
trampolines, at the expense of fragmentation and linker running time. Specifying 0 for this option disables
coalescing. The default is 16K.

7.4.30 Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker's symbol table.
This forces the linker to search a library and include the member that defines the symbol. The linker must
encounter the --undef_sym option before it links in the member that defines the symbol. The syntax for the
--undef_sym option is:

--undef_sym= symbol

For example, suppose a library named rts6200.lib contains a member that defines the symbol symtab;
none of the object files being linked reference symtab. However, suppose you plan to relink the output
module and you want to include the library member that defines symtab in this link. Using the --undef_sym
option as shown below forces the linker to search rts6200.lib for the member that defines symtab and to
link in the member.
cl6x --run_linker --undef_sym=symtab file1.obj file2.obj rts6200.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in
file1.obj or file2.obj.

7.4.31 Display a Message When an Undefined Output Section Is Created (--warn_sections
Option)

In a link command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the linker encounters one or more input sections that do not
have a corresponding output section defined in the SECTIONS directive, the linker combines the input
sections that have the same name into an output section with that name. By default, the linker does not
display a message to tell you that this occurred.

You can use the --warn_sections option to cause the linker to display a message when it creates a new
output section.

For more information about the SECTIONS directive, see Section 7.5.4. For more information about the
default actions of the linker, see Section 7.7.

193SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Options www.ti.com

7.4.32 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the
result of a link. The information included in this file includes all of the information that is currently produced
in a linker generated map file.

See Appendix B for specifics on the contents of the generated XML file.

7.4.33 Zero Initialization (--zero_init Option)

In ANSI C, global and static variables that are not explicitly initialized must be set to 0 before program
execution. The C/C++ EABI compiler supports preinitialization of uninitialized variables by default. This
can be turned off by specifying the linker option --zero_init=off. COFF ABI does not support zero
initialization.

The syntax for the --zero_init option is:

--zero_init[={on|off}]

194 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

7.5 Linker Command Files

Linker command files allow you to put linking information in a file; this is useful when you invoke the linker
often with the same information. Linker command files are also useful because they allow you to use the
MEMORY and SECTIONS directives to customize your application. You must use these directives in a
command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

• Input filenames, which specify object files, archive libraries, or other command files. (If a command file
calls another command file as input, this statement must be the last statement in the calling command
file. The linker does not return from called command files.)

• Linker options, which can be used in the command file in the same manner that they are used on the
command line

• The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory
configuration (see Section 7.5.3). The SECTIONS directive controls how sections are built and
allocated (see Section 7.5.4.)

• Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the cl6x --run_linker command and follow it with the name
of the command file:

cl6x --run_linker command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an
object file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and
processing commands from it. Command filenames are case sensitive, regardless of the system used.

Example 7-1 shows a sample link command file called link.cmd.

Example 7-1. Linker Command File

a.obj /* First input filename */
b.obj /* Second input filename */
--output_file=prog.out /* Option to specify output file */
--map_file=prog.map /* Option to specify map file */

The sample file in Example 7-1 contains only filenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:
cl6x --run_linker link.cmd

You can place other parameters on the command line when you use a command file:
cl6x --run_linker --relocatable link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters the filename, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called names.lst that contains
filenames and another file called dir.cmd that contains linker directives, you could enter:
cl6x --run_linker names.lst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command
file calls another command file as input, this statement must be the last statement in the calling command
file.

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the
format of linker directives in a command file. Example 7-2 shows a sample command file that contains
linker directives.

195SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

Example 7-2. Command File With Linker Directives

a.obj b.obj c.obj /* Input filenames */
--output_file=prog.out /* Options */
--map_file=prog.map

MEMORY /* MEMORY directive */
{
FAST_MEM: origin = 0x0100 length = 0x0100
SLOW_MEM: origin = 0x7000 length = 0x1000

}

SECTIONS /* SECTIONS directive */
{
.text: > SLOW_MEM
.data: > SLOW_MEM
.bss: > FAST_MEM

}

For more information, see Section 7.5.3 for the MEMORY directive, and Section 7.5.4 for the SECTIONS
directive.

7.5.1 Reserved Names in Linker Command Files

The following names (in lowercase also) are reserved as keywords for linker directives. Do not use them
as symbol or section names in a command file.

ALIGN FILL LOAD_SIZE PAGE START
ATTR GROUP LOAD_START PALIGN TABLE
BLOCK HIGH MEMORY RUN TYPE
COMPRESSION l (lowercase L) NOINIT RUN_END UNION
COPY len NOLOAD RUN_SIZE UNORDERED
DSECT LENGTH o RUN_START
END LOAD org SECTIONS
f LOAD_END ORIGIN SIZE

7.5.2 Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying decimal,
octal, or hexadecimal constants used in the assembler (see Section 3.7) or the scheme used for integer
constants in C syntax.

Examples:

Format Decimal Octal Hexadecimal

Assembler format 32 40q 020h

C format 32 040 0x20

196 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

7.5.3 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target
memory to accomplish this. The MEMORY directive allows you to specify a model of target memory so
that you can define the types of memory your system contains and the address ranges they occupy. The
linker maintains the model as it allocates output sections and uses it to determine which memory locations
can be used for object code.

The memory configurations of TMS320C6000 systems differ from application to application. The
MEMORY directive allows you to specify a variety of configurations. After you use MEMORY to define a
memory model, you can use the SECTIONS directive to allocate output sections into defined memory.

For more information, see Section 2.3 and Section 2.4.

7.5.3.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based on the
TMS320C6000 architecture. This model assumes that the full 32-bit address space (232 locations) is
present in the system and available for use. For more information about the default memory model, see
Section 7.7.

7.5.3.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and
can be used by a program. Each range has several characteristics:

• Name

• Starting address

• Length

• Optional set of attributes

• Optional fill specification

When you use the MEMORY directive, be sure to identify all memory ranges that are available for loading
code. Memory defined by the MEMORY directive is configured; any memory that you do not explicitly
account for with MEMORY is unconfigured. The linker does not place any part of a program into
unconfigured memory. You can represent nonexistent memory spaces by simply not including an address
range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a
list of memory range specifications enclosed in braces. The MEMORY directive in Example 7-3 defines a
system that has 4K bytes of fast external memory at address 0x0000 0000, 2K bytes of slow external
memory at address 0x0000 1000 and 4K bytes of slow external memory at address 0x1000 0000. It also
demonstrates the use of memory range expressions as well as start/end/size address operators (see
Section 7.5.3.3)

Example 7-3. The MEMORY Directive

/**/
/* Sample command file with MEMORY directive */
/**/
file1.obj file2.obj /* Input files */
--output_file=prog.out /* Options */
#define BUFFER 0

MEMORY
{

FAST_MEM (RX): origin = 0x00000000 length = 0x00001000 + BUFFER
SLOW_MEM (RW): origin = end(FAST_MEM) length = 0x00001800 - size(FAST_MEM)
EXT_MEM (RX): origin = 0x10000000 length = size(FAST_MEM)

197SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

The general syntax for the MEMORY directive is:
MEMORY
{

name 1 [(attr)] : origin = expression , length = expression [, fill = constant]
.
.
name n [(attr)] : origin = expression , length = expression [, fill = constant]

}

name names a memory range. A memory name can be one to 64 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the linker; they
simply identify memory ranges. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table. All memory ranges must have unique
names and must not overlap.

attr specifies one to four attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes restrict the allocation of
output sections into certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any memory for which no
attributes are specified (including all memory in the default model) has all four attributes.
Valid attributes are:
R specifies that the memory can be read.
W specifies that the memory can be written to.
X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

origin specifies the starting address of a memory range; enter as origin, org, or o. The value,
specified in bytes, is an expression of 32-bit constants, which can be decimal, octal, or
hexadecimal.

length specifies the length of a memory range; enter as length, len, or l. The value, specified in
bytes, is an expression of 32-bit constants, which can be decimal, octal, or hexadecimal.

fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value
is a integer constant and can be decimal, octal, or hexadecimal. The fill value is used to fill
areas of the memory range that are not allocated to a section.

Filling Memory Ranges

NOTE: If you specify fill values for large memory ranges, your output file will be very large because
filling a memory range (even with 0s) causes raw data to be generated for all unallocated
blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of
0FFFFFFFFh:
MEMORY
{

RFILE (RW) : o = 0x00000020, l = 0x00001000, f = 0xFFFFFFFF
}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control allocation
of output sections. After you use MEMORY to specify the target system's memory model, you can use
SECTIONS to allocate output sections into specific named memory ranges or into memory that has
specific attributes. For example, you could allocate the .text and .data sections into the area named
FAST_MEM and allocate the .bss section into the area named SLOW_MEM.

198 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

7.5.3.3 Expressions and Address Operators

Memory range origin and length can now use expressions of integer constants with below operators:

Binary operators: * / % + - << >> == =
< <= > >= & | && ||

Unary operators: - ~ !

Expressions are evaluated using standard C operator precedence rules.

No checking is done for overflow or underflow, however, expressions are evaluated using a larger integer
type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols cannot
be used in Memory Directive expressions.

Three new address operators have been added for referencing memory range properties from prior
memory range entries:

START(MR) Returns start address for previously defined memory range MR.
SIZE(MR) Returns size of previously defined memory range MR.
END(MR) Returns end address for previously defined memory range MR.

Example 7-4. Origin and Length as Expressions

/**/
/* Sample command file with MEMORY directive */
/**/
file1.obj file2.obj /* Input files */
--output_file=prog.out /* Options */
#define ORIGIN 0x00000000
#define BUFFER 0x00000200
#define CACHE 0x0001000

MEMORY
{

FAST_MEM (RX): origin = ORIGIN + CACHE length = 0x00001000 + BUFFER
SLOW_MEM (RW): origin = end(FAST_MEM) length = 0x00001800 - size(FAST_MEM)
EXT_MEM (RX): origin = 0x10000000 length = size(FAST_MEM) - CACHE

7.5.4 The SECTIONS Directive

The SECTIONS directive controls your sections in the following ways:

• Describes how input sections are combined into output sections

• Defines output sections in the executable program

• Specifies where output sections are placed in memory (in relation to each other and to the entire
memory space)

• Permits renaming of output sections

For more information, see Section 2.3, Section 2.4, and Section 2.2.4. Subsections allow you to
manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and
allocating the sections. Section 7.7 describes this algorithm in detail.

7.5.4.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by
a list of output section specifications enclosed in braces.

199SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

The general syntax for the SECTIONS directive is:

SECTIONS
{

name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

}

Each section specification, beginning with name, defines an output section. (An output section is a section
in the output file.) A section name can be a subsection specification. (See Section 7.5.4.4 for information
on multi-level subsections.) After the section name is a list of properties that define the section's contents
and how the section is allocated. The properties can be separated by optional commas. Possible
properties for a section are as follows:

• Load allocation defines where in memory the section is to be loaded.
Syntax: load = allocation or

allocation or
> allocation

• Run allocation defines where in memory the section is to be run.
Syntax: run = allocation or

run > allocation

• Input sections defines the input sections (object files) that constitute the output section.
Syntax: { input_sections }

• Section type defines flags for special section types. See Section 7.5.7
Syntax: type = COPY or

type = DSECT or
type = NOLOAD

• Fill value defines the value used to fill uninitialized holes. See Section 7.5.9.
Syntax: fill = value or

name : [properties = value]

Example 7-5 shows a SECTIONS directive in a sample link command file.

Example 7-5. The SECTIONS Directive

/**/
/* Sample command file with SECTIONS directive */
/**/
file1.obj file2.obj /* Input files */
--output_file=prog.out /* Options */

SECTIONS
{

.text: load = EXT_MEM, run = 0x00000800

.const: load = FAST_MEM

.bss: load = SLOW_MEM

.vectors: load = 0x00000000
{

t1.obj(.intvec1)
t2.obj(.intvec2)
endvec = .;

200 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

.const

.data:alpha

.vectors

FAST_MEM

.bss

SLOW_MEM

.data:beta

.text

EXT_MEM

0x00000000

0x00001000

0x00001800

0x10000000

0x10001000

0xFFFFFFFF

- Bound at 0x00000000

- Allocated in FAST_MEM

- Allocated in SLOW_MEM

- Aligned on 16-byte
boundary

- Aligned on 16-byte
boundary

- Empty range of memory
as defined in above

- Allocated in EXT_MEM

- Empty range of memory
as defined in above

The section is composed of the .intvec1
section from t1.obj and the .intvec2 section from
t2.obj.

.vectors

The section combines the .const sections
from file1.obj and file2.obj.

.const

The section combines the .bss sections from
file1.obj and file2.obj.

.bss

The subsection combines the .data:al-
pha subsections from file1.obj and file2.obj. The

subsection combines the .data:beta
subsections from file1.obj and file2.obj. The linker
places the subsections anywhere there is space for
them (in SLOW_MEM in this illustration) and aligns
each on a 16-byte boundary.

.data:alpha

.data:beta

The section combines the .text sections from
file1.obj and file2.obj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0x00000800.

.text

www.ti.com Linker Command Files

Example 7-5. The SECTIONS Directive (continued)

}
.data:alpha: align = 16
.data:beta: align = 16

}

Figure 7-2 shows the six output sections defined by the SECTIONS directive in Example 7-5 (.vectors,
.text, .const, .bss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory
using the MEMORY directive given in Example 7-3.

Figure 7-2. Section Allocation Defined by Example 7-5

7.5.4.2 Allocation

The linker assigns each output section two locations in target memory: the location where the section will
be loaded and the location where it will be run. Usually, these are the same, and you can think of each
section as having only a single address. The process of locating the output section in the target's memory
and assigning its address(es) is called allocation. For more information about using separate load and run
allocation, see Section 7.5.5.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to allocate the
section. Generally, the linker puts sections wherever they fit into configured memory. You can override this
default allocation for a section by defining it within a SECTIONS directive and providing instructions on
how to allocate it.

You control allocation by specifying one or more allocation parameters. Each parameter consists of a
keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If
load and run allocation are separate, all parameters following the keyword LOAD apply to load allocation,
and those following the keyword RUN apply to run allocation. The allocation parameters are:

201SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

Binding allocates a section at a specific address.
.text: load = 0x1000

Named memory allocates the section into a range defined in the MEMORY directive with the specified
name (like SLOW_MEM) or attributes.
.text: load > SLOW_MEM

Alignment uses the align or palign keyword to specify that the section must start on an address
boundary.
.text: align = 0x100

Blocking uses the block keyword to specify that the section must fit between two address
boundaries: if the section is too big, it starts on an address boundary.
.text: block(0x100)

For the load (usually the only) allocation, you can simply use a greater-than sign and omit the load
keyword:

.text: > SLOW_MEM

.text: {...} > SLOW_MEM

.text: > 0x4000

If more than one parameter is used, you can string them together as follows:
.text: > SLOW_MEM align 16

Or if you prefer, use parentheses for readability:
.text: load = (SLOW_MEM align(16))

You can also use an input section specification to identify the sections from input files that are combined
to form an output section. See Section 7.5.4.3.

7.5.4.2.1 Binding

You can supply a specific starting address for an output section by following the section name with an
address:

.text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be
a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but
they cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues
an error message.

Binding is Incompatible With Alignment and Named Memory

NOTE: You cannot bind a section to an address if you use alignment or named memory. If you try
to do this, the linker issues an error message.

7.5.4.2.2 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see
Section 7.5.3). This example names ranges and links sections into them:
MEMORY
{

SLOW_MEM (RIX) : origin = 0x00000000, length = 0x00001000
FAST_MEM (RWIX) : origin = 0x03000000, length = 0x00000300

}

SECTIONS
{

.text : > SLOW_MEM

.data : > FAST_MEM ALIGN(128)

.bss : > FAST_MEM

202 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

}

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output
sections are allocated into FAST_MEM. You can align a section within a named memory range; the .data
section is aligned on a 128-byte boundary within the FAST_MEM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a
set of attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive
declaration, you can specify:
SECTIONS
{

.text: > (X) /* .text --> executable memory */

.data: > (RI) /* .data --> read or init memory */

.bss : > (RW) /* .bss --> read or write memory */
}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area
because both areas have the X attribute. The .data section can also go into either SLOW_MEM or
FAST_MEM because both areas have the R and I attributes. The .bss output section, however, must go
into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific
address, use binding instead of named memory.

7.5.4.2.3 Controlling Allocation Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by
default. Alternatively, you can cause the linker to allocate a section from high to low addresses within a
memory range by using the HIGH location specifier in the SECTION directive declaration.

For example, given this MEMORY directive:
MEMORY
{

RAM : origin = 0x0200, length = 0x0800
FLASH : origin = 0x1100, length = 0xEEE0
VECTORS : origin = 0xFFE0, length = 0x001E
RESET : origin = 0xFFFE, length = 0x0002

}

and an accompanying SECTIONS directive:
SECTIONS
{

.bss : {} > RAM

.sysmem : {} > RAM

.stack : {} > RAM (HIGH)
}

The HIGH specifier used on the .stack section allocation causes the linker to attempt to allocate .stack into
the higher addresses within the RAM memory range. The .bss and .sysmem sections are allocated into
the lower addresses within RAM. Example 7-6 illustrates a portion of a map file that shows where the
given sections are allocated within RAM for a typical program.

Example 7-6. Linker Allocation With the HIGH Specifier

.bss 0 00000200 00000270 UNINITIALIZED
00000200 0000011a rtsxxx.lib : defs.obj (.bss)
0000031a 00000088 : trgdrv.obj (.bss)
000003a2 00000078 : lowlev.obj (.bss)
0000041a 00000046 : exit.obj (.bss)
00000460 00000008 : memory.obj (.bss)
00000468 00000004 : _lock.obj (.bss)
0000046c 00000002 : fopen.obj (.bss)
0000046e 00000002 hello.obj (.bss)

203SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

Example 7-6. Linker Allocation With the HIGH Specifier (continued)

.sysmem 0 00000470 00000120 UNINITIALIZED
00000470 00000004 rtsxxx .lib : memory.obj (.sysmem)

.stack 0 000008c0 00000140 UNINITIALIZED
000008c0 00000002 rtsxxx .lib : boot.obj (.stack)

As shown in Example 7-6 , the .bss and .sysmem sections are allocated at the lower addresses of RAM
(0x0200 - 0x0590) and the .stack section is allocated at address 0x08c0, even though lower addresses
are available.

Without using the HIGH specifier, the linker allocation would result in the code shown in Example 7-7

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>
operator).

Example 7-7. Linker Allocation Without HIGH Specifier

.bss 0 00000200 00000270 UNINITIALIZED
00000200 0000011a rtsxxx.lib : defs.obj (.bss)
0000031a 00000088 : trgdrv.obj (.bss)
000003a2 00000078 : lowlev.obj (.bss)
0000041a 00000046 : exit.obj (.bss)
00000460 00000008 : memory.obj (.bss)
00000468 00000004 : _lock.obj (.bss)
0000046c 00000002 : fopen.obj (.bss)
0000046e 00000002 hello.obj (.bss)

.stack 0 00000470 00000140 UNINITIALIZED
00000470 00000002 rtsxxx.lib : boot.obj (.stack)

.sysmem 0 000005b0 00000120 UNINITIALIZED
000005b0 00000004 rtsxxx.lib : memory.obj (.sysmem)

7.5.4.2.4 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n
is a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls
on a 32-byte boundary:

.text: load = align(32)

You can specify the same alignment with the palign keyword. In addition, palign ensures the section's size
is a multiple of its placement alignment restrictions, padding the section size up to such a boundary, as
needed.

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The
specified block size must be a power of 2. For example, the following code allocates .bss so that the entire
section is contained in a single 128-byte page or begins on that boundary:
bss: load = block(0x0080)

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and
blocking cannot be used together.

204 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

7.5.4.2.5 Alignment With Padding

As with align, you can tell the linker to place an output section at an address that falls on an n-byte
boundary, where n is a power of 2, by using the palign keyword. In addition, palign ensures that the size
of the section is a multiple of its placement alignment restrictions, padding the section size up to such a
boundary, as needed.

For example, the following code lines allocate .text on a 2-byte boundary within the PMEM area. The .text
section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

.text: palign(2) {} > PMEM

.text: palign = 2 {} > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized. By
default, padding space is filled with a value of 0 (zero). However, if a fill value is specified for the output
section then any padding for the section is also filled with that fill value.

For example, consider the following section specification:
.mytext: palign(8), fill = 0xffffffff {} > PMEM

In this example, the length of the .mytext section is 6 bytes before the palign operator is applied. The
contents of .mytext are as follows:
addr content
---- -------
0000 0x1234
0002 0x1234
0004 0x1234

After the palign operator is applied, the length of .mytext is 8 bytes, and its contents are as follows:
addr content
---- -------
0000 0x1234
0002 0x1234
0004 0x1234
0006 0xffff

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker has
been filled with 0xff.

The fill value specified in the linker command file is interpreted as a 16-bit constant, so if you specify this
code:

.mytext: palign(8), fill = 0xff {} > PMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:
addr content
---- -------
0000 0x1234
0002 0x1234
0004 0x1234
0006 0xffff
0008 0x00ff
000a 0x00ff

If the palign operator is applied to an uninitialized section, then the size of the section is bumped to the
appropriate boundary, as needed, but any padding created is not initialized.

The palign operator can also take a parameter of power2. This parameter tells the linker to add padding to
increase the section's size to the next power of two boundary. In addition, the section is aligned on that
power of 2 as well.

For example, consider the following section specification:
.mytext: palign(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After
applying the palign(power2) operator, the .mytext output section will have the following properties:
name addr size align

205SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

------- ---------- ----- -----
.mytext 0x00010080 0x80 128

206 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

7.5.4.3 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an output
section. In general, the linker combines input sections by concatenating them in the order in which they
are specified. However, if alignment or blocking is specified for an input section, all of the input sections
within the output section are ordered as follows:

• All aligned sections, from largest to smallest

• All blocked sections, from largest to smallest

• All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.

Example 7-8 shows the most common type of section specification; note that no input sections are listed.

Example 7-8. The Most Common Method of Specifying Section Contents

SECTIONS
{

.text:

.data:

.bss:
}

In Example 7-8, the linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters them in the
input files. The linker performs similar operations with the .data and .bss sections. You can use this type of
specification for any output section.

You can explicitly specify the input sections that form an output section. Each input section is identified by
its filename and section name:
SECTIONS
{
.text : /* Build .text output section */
{
f1.obj(.text) /* Link .text section from f1.obj */
f2.obj(sec1) /* Link sec1 section from f2.obj */
f3.obj /* Link ALL sections from f3.obj */
f4.obj(.text,sec2) /* Link .text and sec2 from f4.obj */
}

}

It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections,all of its sections are included in the output section. If any
additional input sections have the same name as an output section but are not explicitly specified by the
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the
linker found more .text sections in the preceding example and these .text sections were not specified
anywhere in the SECTIONS directive, the linker would concatenate these extra sections after f4.obj(sec2).

The specifications in Example 7-8 are actually a shorthand method for the following:
SECTIONS
{
.text: { *(.text) }
.data: { *(.data) }
.bss: { *(.bss) }

}

The specification *(.text) means the unallocated .text sections from all the input files. This format is useful
when:

• You want the output section to contain all input sections that have a specified name, but the output
section name is different from the input sections' name.

207SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

• You want the linker to allocate the input sections before it processes additional input sections or
commands within the braces.

208 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

The following example illustrates the two purposes above:
SECTIONS
{

.text : {
abc.obj(xqt)

*(.text)
}

.data : {
*(.data)
fil.obj(table)

}
}

In this example, the .text output section contains a named section xqt from file abc.obj, which is followed
by all the .text input sections. The .data section contains all the .data input sections, followed by a named
section table from the file fil.obj. This method includes all the unallocated sections. For example, if one of
the .text input sections was already included in another output section when the linker encountered
*(.text), the linker could not include that first .text input section in the second output section.

7.5.4.4 Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names separated
by colons. For example, A:B and A:B:C name subsections of the base section A. In certain places in a link
command file specifying a base name, such as A, selects the section A as well as any subsections of A,
such as A:B or A:C:D.

A name such as A:B can be used to specify a (sub)section of that name as well as any (multi-level)
subsections beginning with that name, such as A:B:C, A:B:OTHER, etc. All the subsections of A:B are
also subsections of A. A and A:B are supersections of A:B:C. Among a group of supersections of a
subsection, the nearest supersection is the supersection with the longest name. Thus, among {A, A:B} the
nearest supersection of A:B:C:D is A:B.

With multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section
of the same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same
name or in the nearest existing supersection of such an output section. An exception to this rule is that
during a partial link (specified by the --relocatable linker option) a subsection is allocated only to an
existing output section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output
section with the same name as the base name of the input section

Consider linking input sections with the following names:
europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta
europe:north:iceland

This SECTIONS specification allocates the input sections as indicated in the comments:
SECTIONS {
nordic: {*(europe:north)

(europe:central:denmark)} / the nordic countries */
central: {*(europe:central)} /* france, germany */
therest: {*(europe)} /* spain, italy, malta */

}

209SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

This SECTIONS specification allocates the input sections as indicated in the comments:
SECTIONS {
islands: {*(europe:south:malta)

(europe:north:iceland)} / malta, iceland */
europe:north:finland : {} /* finland */
europe:north : {} /* norway, sweden */
europe:central : {} /* germany, denmark */
europe:central:france: {} /* france */

/* (italy, spain) go into a linker-generated output section "europe" */
}

Upward Compatibility of Multi-Level Subsections

NOTE: Existing linker commands that use the existing single-level subsection features and which
do not contain section names containing multiple colon characters continue to behave as
before. However, if section names in a link command file or in the input sections supplied to
the linker contain multiple colon characters, some change in behavior could be possible. You
should carefully consider the impact of the new rules for multiple levels to see if it affects a
particular system link.

7.5.4.5 Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section.
Consider this SECTIONS directive:

Example 7-9. Archive Members to Output Sections

SECTIONS
{

boot > BOOT1
{

-l=rtsXX.lib<boot.obj> (.text)
-l=rtsXX.lib<exit.obj strcpy.obj> (.text)

}

.rts > BOOT2
{

-l=rtsXX.lib (.text)
}

.text > RAM
{

* (.text)
}

}

In Example 7-9, the .text sections of boot.obj, exit.obj, and strcpy.obj are extracted from the
run-time-support library and placed in the .boot output section. The remainder of the run-time-support
library object that is referenced is allocated to the .rts output section. Finally, the remainder of all other
.text sections are to be placed in section .text.

An archive member or a list of members is specified by surrounding the member name(s) with angle
brackets < and > after the library name. Any object files separated by commas or spaces from the
specified archive file are legal within the angle brackets.

The --library option (which normally implies a library path search be made for the named file following the
option) listed before each library in Example 7-9 is optional when listing specific archive members inside <
>. Using < > implies that you are referring to a library.

210 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

To collect a set of the input sections from a library in one place, use the --library option within the
SECTIONS directive. For example, the following collects all the .text sections from rts6200.lib into the
.rtstest section:
SECTIONS
{

.rtstest { -l=rts6200.lib(.text) } > RAM
}

SECTIONS Directive Effect on --priority

NOTE: Specifying a library in a SECTIONS directive causes that library to be entered in the list of
libraries that the linker searches to resolve references. If you use the --priority option, the first
library specified in the command file will be searched first.

7.5.4.6 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be
allocated. Consider the following example:
MEMORY
{

P_MEM1 : origin = 0x02000, length = 0x01000
P_MEM2 : origin = 0x04000, length = 0x01000
P_MEM3 : origin = 0x06000, length = 0x01000
P_MEM4 : origin = 0x08000, length = 0x01000

}

SECTIONS
{

.text : { } > P_MEM1 | P_MEM2 | P_MEM4
}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a
whole into the first memory range in which it fits. The memory ranges are accessed in the order specified.
In this example, the linker first tries to allocate the section in P_MEM1. If that attempt fails, the linker tries
to place the section into P_MEM2, and so on. If the output section is not successfully allocated in any of
the named memory ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section
that grows beyond the available space of the memory range in which it is originally allocated. Instead of
modifying the link command file, you can let the linker move the section into one of the other areas.

7.5.4.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges to achieve an efficient allocation. Use
the >> operator to indicate that an output section can be split, if necessary, into the specified memory
ranges. For example:
MEMORY
{

P_MEM1 : origin = 0x2000, length = 0x1000
P_MEM2 : origin = 0x4000, length = 0x1000
P_MEM3 : origin = 0x6000, length = 0x1000
P_MEM4 : origin = 0x8000, length = 0x1000

}

SECTIONS
{
.text: { *(.text) } >> P_MEM1 | P_MEM2 | P_MEM3 | P_MEM4

}

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input
section boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEM3 | P_MEM4.

211SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

The | operator is used to specify the list of multiple memory ranges.

212 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

You can also use the >> operator to indicate that an output section can be split within a single memory
range. This functionality is useful when several output sections must be allocated into the same memory
range, but the restrictions of one output section cause the memory range to be partitioned. Consider the
following example:
MEMORY
{

RAM : origin = 0x1000, length = 0x8000
}

SECTIONS
{
.special: { f1.obj(.text) } load = 0x4000
.text: { *(.text) } >> RAM

}

The .special output section is allocated near the middle of the RAM memory range. This leaves two
unused areas in RAM: from 0x1000 to 0x4000, and from the end of f1.obj(.text) to 0x8000. The
specification for the .text section allows the linker to split the .text section around the .special section and
use the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:
MEMORY
{
P_MEM1 (RWX) : origin = 0x1000, length = 0x2000
P_MEM2 (RWI) : origin = 0x4000, length = 0x1000

}

SECTIONS
{
.text: { *(.text) } >> (RW)

}

The linker attempts to allocate all or part of the output section into any memory range whose attributes
match the attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:
SECTIONS
{
.text: { *(.text) } >> P_MEM1 | P_MEM2}
}

Certain sections should not be split:

• Certain sections created by the compiler, including

– The .cinit section, which contains the autoinitialization table for C/C++ programs

– The .pinit section, which contains the list of global constructors for C++ programs

– The .bss section, which defines global variables

• An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

• An output section that has a START(), END(), OR SIZE() operator applied to it. These operators
provide information about a section's load or run address, and size. Splitting the section may
compromise the integrity of the operation.

• The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)

If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

213SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

7.5.5 Specifying a Section's Run-Time Address

At times, you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in slow external memory. The code must be loaded into slow external
memory, but it would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the
linker to allocate a section twice: once to set its load address and again to set its run address. For
example:

.fir: load = SLOW_MEM, run = FAST_MEM

Use the load keyword for the load address and the run keyword for the run address.

See Section 2.5 for an overview on run-time relocation.

7.5.5.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the
section (such as labels in it) refer to its run address. The application must copy the section from its load
address to its run address; this does not happen automatically when you specify a separate run address.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is allocated as if it were
two sections of the same size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides a way to overlay sections; see
Section 7.5.6.1.)

If either the load or run address has additional parameters, such as alignment or blocking, list them after
the appropriate keyword. Everything related to allocation after the keyword load affects the load address
until the keyword run is seen, after which, everything affects the run address. The load and run allocations
are completely independent, so any qualification of one (such as alignment) has no effect on the other.
You can also specify run first, then load. Use parentheses to improve readability.

The examples below specify load and run addresses:
.data: load = SLOW_MEM, align = 32, run = FAST_MEM

(align applies only to load)
.data: load = (SLOW_MEM align 32), run = FAST_MEM

(identical to previous example)
.data: run = FAST_MEM, align 32,

load = align 16

(align 32 in FAST_MEM for run; align 16 anywhere for load)

7.5.5.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address.
The linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker
warns you and ignores the load address. Otherwise, if you specify only one address, the linker treats it as
a run address, regardless of whether you call it load or run. This example specifies load and run
addresses for an uninitialized section:

.bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples
have the same effect. The .bss section is allocated in FAST_MEM.

.bss: load = FAST_MEM

.bss: run = FAST_MEM

.bss: > FAST_MEM

214 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

7.5.5.3 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol in a section refers to its run-time address. However, it may be
necessary at run time to refer to a load-time address. Specifically, the code that copies a section from its
load address to its run address must have access to the load address. The .label directive defines a
special symbol that refers to the section's load address. Thus, whereas normal symbols are relocated with
respect to the run address, .label symbols are relocated with respect to the load address. See Create a
Load-Time Address Label for more information on the .label directive.

Example 7-10 and Example 7-11 show the use of the .label directive to copy a section from its load
address in SLOW_MEM to its run address in FAST_MEM. Figure 7-3 illustrates the run-time execution of
Example 7-10.

Example 7-10. Copying Section Assembly Language File

.sect ".fir"

.align 4

.label fir_src
fir

; insert code here

.label fir_end

.text
MVKL fir_src, A4
MVKH fir_src, A4
MVKL fir_end, A5
MVKH fir_end, A5
MVKL fir, A6
MVKH fir, A6
SUB A5, A4, A1

loop:
[!A1] B done

LDW *A4+ +, B3
NOP 4
; branch occurs
STW B3, *A6+ +
SUB A1, 4, A1
B loop
NOP 5
; branch occurs

done:
B fir
NOP 5
; call occurs

Example 7-11. Linker Command File for Example 7-10

/**/
/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
/**/

MEMORY
{

FAST_MEM : origin = 0x00001000, length = 0x00001000
SLOW_MEM : origin = 0x10000000, length = 0x00001000

}

SECTIONS
{

215SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

fir (relocated
to run here)

.text

FAST_MEM

SLOW_MEM

fir (loads here)

0x00000000

0x00001000

0x10000000

0x10001000

0xFFFFFFFF

Linker Command Files www.ti.com

Example 7-11. Linker Command File for Example 7-10 (continued)

.text: load = FAST_MEM

.fir: load = SLOW_MEM, run FAST_MEM
}

Figure 7-3. Run-Time Execution of Example 7-10

7.5.6 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and UNION. Unioning sections
causes the linker to allocate them to the same run address. Grouping sections causes the linker to
allocate them contiguously in memory. Section names can refer to sections, subsections, or archive library
members.

7.5.6.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to occupy the same address
during run time. For example, you may have several routines you want in fast external memory at various
stages of execution. Or you may want several data objects that are not active at the same time to share a
block of memory. The UNION statement within the SECTIONS directive provides a way to allocate several
sections at the same run-time address.

In Example 7-12, the .bss sections from file1.obj and file2.obj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The
components of a union remain independent sections; they are simply allocated together as a unit.

Example 7-12. The UNION Statement

SECTIONS
{

.text: load = SLOW_MEM
UNION: run = FAST_MEM
{

.bss:part1: { file1.obj(.bss) }

.bss:part2: { file2.obj(.bss) }
}

.bss:part3: run = FAST_MEM { globals.obj(.bss) }
}

216 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

.bss:part2

.bss:part1

.bss:part3

FAST_MEM

.text

SLOW_MEM

Sections can run
as a union. This
is run-time alloca-
tion only.

.text 2 (run)

.text 1 (run)

.bss:part3

FAST_MEM

.text 1 (load)

SLOW_MEM

.text 2 (load)

Sections cannot
load as a union

Copies at
run time

www.ti.com Linker Command Files

Allocation of a section as part of a union affects only its run address. Under no circumstances can
sections be overlaid for loading. If an initialized section is a union member (an initialized section, such as
.text, has raw data), its load allocation must be separately specified. See Example 7-13.

Example 7-13. Separate Load Addresses for UNION Sections

UNION run = FAST_MEM
{

.text:part1: load = SLOW_MEM, { file1.obj(.text) }

.text:part2: load = SLOW_MEM, { file2.obj(.text) }
}

Figure 7-4. Memory Allocation Shown in Example 7-12 and Example 7-13

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a
union. Therefore, each requires its own load address. If you fail to provide a load allocation for an
initialized section within a UNION, the linker issues a warning and allocates load space anywhere it can in
configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load
address for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any
one allocation specified is considered a run address, and if both run and load addresses are specified, the
linker issues a warning and ignores the load address.

217SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

7.5.6.2 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously. For
example, assume that a section named term_rec contains a termination record for a table in the .data
section. You can force the linker to allocate .data and term_rec together:

Example 7-14. Allocate Sections Together

SECTIONS
{

.text /* Normal output section */

.bss /* Normal output section */
GROUP 0x00001000 : /* Specify a group of sections */
{

.data /* First section in the group */
term_rec /* Allocated immediately after .data */

}
}

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as a single
output section. In the preceding example, the GROUP is bound to address 0x1000. This means that .data
is allocated at 0x1000, and term_rec follows it in memory.

You Cannot Specify Addresses for Sections Within a GROUP

NOTE: When you use the GROUP option, binding, alignment, or allocation into named memory can
be specified for the group only. You cannot use binding, named memory, or alignment for
sections within a group.

7.5.6.3 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By
nesting GROUP and UNION statements, you can express hierarchical overlays and groupings of sections.
Example 7-15 shows how two overlays can be grouped together.

Example 7-15. Nesting GROUP and UNION Statements

SECTIONS
{

GROUP 0x1000 : run = FAST_MEM
{

UNION:
{

mysect1: load = SLOW_MEM
mysect2: load = SLOW_MEM

}
UNION:
{

mysect3: load = SLOW_MEM
mysect4: load = SLOW_MEM

}
}

}

For this example, the linker performs the following allocations:

• The four sections (mysect1, mysect2, mysect3, mysect4) are assigned unique, non-overlapping load
addresses. The name you defined with the .label directive is used in the SLOW_MEM memory region.
This assignment is determined by the particular load allocations given for each section.

218 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

• Sections mysect1 and mysect2 are assigned the same run address in FAST_MEM.

• Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

• The run addresses of mysect1/mysect2 and mysect3/mysect4 are allocated contiguously, as directed
by the GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:

GROUP_n UNION_n

In this notation, n is a sequential number (beginning at 1) that represents the lexical ordering of the group
or union in the linker control file, without regard to nesting. Groups and unions each have their own
counter.

7.5.6.4 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections.
The following rules are used:

• Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions
that are not nested under any other groups or unions). The linker uses the run address of the top-level
structure to compute the run addresses of the components within groups and unions.

• The linker does not accept a load allocation for UNIONs.

• The linker does not accept a load allocation for uninitialized sections.

• In most cases, you must provide a load allocation for an initialized section. However, the linker does
not accept a load allocation for an initialized section that is located within a group that already defines
a load allocator.

• As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations
for every initialized section or subgroup nested within the group. However, a load allocation is
accepted for an entire group only if all of the following conditions are true:

– The group is initialized (that is, it has at least one initialized member).

– The group is not nested inside another group that has a load allocator.

– The group does not contain a union containing initialized sections.

• If the group contains a union with initialized sections, it is necessary to specify the load allocation for
each initialized section nested within the group. Consider the following example:
SECTIONS
{

GROUP: load = SLOW_MEM, run = SLOW_MEM
{
.text1:
UNION:
{
.text2:
.text3:

}
}

}

The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that
these load allocations be specified explicitly.

219SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

7.5.6.5 Naming UNIONs and GROUPs

You can give a name to a UNION or GROUP by entering the name in parentheses after the declaration.
For example:

GROUP(BSS_SYSMEM_STACK_GROUP)
{

.bss :{}

.sysmem :{}

.stack :{}
} load=D_MEM, run=D_MEM

The name you defined is used in diagnostics for easy identification of the problem LCF area. For example:
warning: LOAD placement ignored for "BSS_SYSMEM_STACK_GROUP": object is uninitialized

UNION(TEXT_CINIT_UNION)
{

.const :{}load=D_MEM, table(table1)

.pinit :{}load=D_MEM, table(table1)
}run=P_MEM

warning:table(table1) operator ignored: table(table1) has already been applied to a section
in the "UNION(TEXT_CINIT_UNION)" in which ".pinit" is a descendant

7.5.7 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)

You can assign three special types to output sections: DSECT, COPY, and NOLOAD. These types affect
the way that the program is treated when it is linked and loaded. You can assign a type to a section by
placing the type after the section definition. For example:
SECTIONS

{
sec1: load = 0x00002000, type = DSECT {f1.obj}
sec2: load = 0x00004000, type = COPY {f2.obj}
sec3: load = 0x00006000, type = NOLOAD {f3.obj}
sec4: load = 0x00008000, type = NOINIT {f4.obj}
}

• The DSECT type creates a dummy section with the following characteristics:

– It is not included in the output section memory allocation. It takes up no memory and is not included
in the memory map listing.

– It can overlay other output sections, other DSECTs, and unconfigured memory.

– Global symbols defined in a dummy section are relocated normally. They appear in the output
module's symbol table with the same value they would have if the DSECT had actually been
loaded. These symbols can be referenced by other input sections.

– Undefined external symbols found in a DSECT cause specified archive libraries to be searched.

– The section's contents, relocation information, and line number information are not placed in the
output module.

In the preceding example, none of the sections from f1.obj are allocated, but all the symbols are
relocated as though the sections were linked at address 0x2000. The other sections can refer to any of
the global symbols in sec1.

• A COPY section is similar to a DSECT section, except that its contents and associated information are
written to the output module. The .cinit section that contains initialization tables for the TMS320C6000
C/C++ compiler has this attribute under the run-time initialization model.

• A NOLOAD section differs from a normal output section in one respect: the section's contents,
relocation information, and line number information are not placed in the output module. The linker
allocates space for the section, and it appears in the memory map listing.

• A NOINIT section is not C auto-initialized by the linker. It is your responsibility to initialize this section
as needed.

220 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

7.5.8 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign values to them at
link time. You can use this feature to initialize a variable or pointer to an allocation-dependent value.

7.5.8.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements in the C
language:

symbol = expression; assigns the value of expression to symbol
symbol + = expression; adds the value of expression to symbol
symbol - = expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression
symbol / = expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters it into the
symbol table. The expression must follow the rules defined in Section 7.5.8.3. Assignment statements
must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output sections. Therefore, if an
expression contains a symbol, the address used for that symbol reflects the symbol's address in the
executable output file.

For example, suppose a program reads data from one of two tables identified by two external symbols,
Table1 and Table2. The program uses the symbol cur_tab as the address of the current table. The
cur_tab symbol must point to either Table1 or Table2. You could accomplish this in the assembly code,
but you would need to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:
prog.obj /* Input file */
cur_tab = Table1; /* Assign cur_tab to one of the tables */

7.5.8.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC)
during allocation. The SPC keeps track of the current location within a section. The linker's . symbol is
analogous to the assembler's $ symbol. The . symbol can be used only in assignment statements within a
SECTIONS directive because . is meaningful only during allocation and SECTIONS controls the allocation
process. (See Section 7.5.4.)

The . symbol refers to the current run address, not the current load address, of the section.

For example, suppose a program needs to know the address of the beginning of the .data section. By
using the .global directive (see Identify Global Symbols), you can create an external undefined variable
called Dstart in the program. Then, assign the value of . to Dstart:
SECTIONS
{

.text: {}

.data: {Dstart = .;}

.bss : {}
}

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before .data is
allocated.) The linker relocates all references to Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the SPC within an output
section and creates a hole between two input sections. Any value assigned to . to create a hole is relative
to the beginning of the section, not to the address actually represented by the . symbol. Holes and
assignments to . are described in Section 7.5.9.

221SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

7.5.8.3 Assignment Expressions

These rules apply to linker expressions:

• Expressions can contain global symbols, constants, and the C language operators listed in Table 7-11.

• All numbers are treated as long (32-bit) integers.

• Constants are identified by the linker in the same way as by the assembler. That is, numbers are
recognized as decimal unless they have a suffix (H or h for hexadecimal and Q or q for octal). C
language prefixes are also recognized (0 for octal and 0x for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

• Symbols within an expression have only the value of the symbol's address. No type-checking is
performed.

• Linker expressions can be absolute or relocatable. If an expression contains any relocatable symbols
(and 0 or more constants or absolute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, it is relocatable; if it is assigned the value
of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 7-11 in order of precedence. Operators in the
same group have the same precedence. Besides the operators listed in Table 7-11, the linker also has an
align operator that allows a symbol to be aligned on an n-byte boundary within an output section (n is a
power of 2). For example, the following expression aligns the SPC within the current section on the next
16-byte boundary. Because the align operator is a function of the current SPC, it can be used only in the
same context as . —that is, within a SECTIONS directive.

. = align(16);

Table 7-11. Groups of Operators Used in Expressions (Precedence)

Group 1 (Highest Precedence) Group 6

! Logical NOT
~ Bitwise NOT & Bitwise AND
- Negation

Group 2 Group 7

* Multiplication
/ Division | Bitwise OR

% Modulus

Group 3 Group 8

+ Addition && Logical AND- Subtraction

Group 4 Group 9

>> Arithmetic right shift || Logical OR<< Arithmetic left shift

Group 5 Group 10 (Lowest Precedence)

== Equal to = Assignment! = Not equal to + = A + = B is equivalent to A = A + B> Greater than - = A - = B is equivalent to A = A - B< Less than * = A * = B is equivalent to A = A * B< = Less than or equal to / = A / = B is equivalent to A = A / B> = Greater than or equal to

222 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

7.5.8.4 Symbols Defined by the Linker

The linker automatically defines several symbols based on which sections are used in your assembly
source. A program can use these symbols at run time to determine where a section is linked. Since these
symbols are external, they appear in the linker map. Each symbol can be accessed in any assembly
language module if it is declared with a .global directive (see Identify Global Symbols). You must have
used the corresponding section in a source module for the symbol to be created. Values are assigned to
these symbols as follows:

.text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

The following symbols are defined only for C/C++ support when the --ram_model or --rom_model option is
used.

__TI_STACK_END is assigned the end of the .stack size for ELF.
__TI_STACK_SIZE is assigned the size of the .stack section for ELF.
__TI_STATIC_BASE is assigned the value to be loaded into the data pointer register (DP)

at boot time. This is typically the start of the first section containing a
definition of a symbol that is referenced via near-DP addressing.

__STACK_END is assigned the end of the .stack size for COFF.
__STACK_SIZE is assigned the size of the .stack section for COFF.
__SYSMEM_SIZE is assigned the size of the .sysmem section for COFF.
__TI_SYSMEM_SIZE is assigned the size of the .sysmem section for ELF.

7.5.8.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol

The code generation tools currently support the ability to load program code in one area of (slow) memory
and run it in another (faster) area. This is done by specifying separate load and run addresses for an
output section or group in the link command file. Then execute a sequence of instructions (the copying
code in Example 7-10) that moves the program code from its load area to its run area before it is needed.

There are several responsibilities that a programmer must take on when setting up a system with this
feature. One of these responsibilities is to determine the size and run-time address of the program code to
be moved. The current mechanisms to do this involve use of the .label directives in the copying code. A
simple example is illustrated Example 7-10.

This method of specifying the size and load address of the program code has limitations. While it works
fine for an individual input section that is contained entirely within one source file, this method becomes
more complicated if the program code is spread over several source files or if the programmer wants to
copy an entire output section from load space to run space.

Another problem with this method is that it does not account for the possibility that the section being
moved may have an associated far call trampoline section that needs to be moved with it.

223SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

7.5.8.6 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output
section. It is interpreted like a PC. Whatever the current offset within the current section is, that is the
value associated with the dot. Consider an output section specification within a SECTIONS directive:
outsect:
{

s1.obj(.text)
end_of_s1 = .;
start_of_s2 = .;
s2.obj(.text)
end_of_s2 = .;

}

This statement creates three symbols:

• end_of_s1—the end address of .text in s1.obj

• start_of_s2—the start address of .text in s2.obj

• end_of_s2—the end address of .text in s2.obj

Suppose there is padding between s1.obj and s2.obj that is created as a result of alignment. Then
start_of_s2 is not really the start address of the .text section in s2.obj, but it is the address before the
padding needed to align the .text section in s2.obj. This is due to the linker's interpretation of the dot
operator as the current PC. It is also due to the fact that the dot operator is evaluated independently of the
input sections around it.

Another potential problem in the above example is that end_of_s2 may not account for any padding that
was required at the end of the output section. You cannot reliably use end_of_s2 as the end address of
the output section. One way to get around this problem is to create a dummy section immediately after the
output section in question. For example:
GROUP
{

outsect:
{

start_of_outsect = .;
...

}
dummy: { size_of_outsect = . - start_of_outsect; }

}

7.5.8.7 Address and Dimension Operators

Six new operators have been added to the link command file syntax:

LOAD_START(sym) Defines sym with the load-time start address of related allocation unit
START(sym)
LOAD_END(sym) Defines sym with the load-time end address of related allocation unit
END(sym)
LOAD_SIZE(sym) Defines sym with the load-time size of related allocation unit
SIZE(sym)
RUN_START(sym) Defines sym with the run-time start address of related allocation unit
RUN_END(sym) Defines sym with the run-time end address of related allocation unit
RUN_SIZE(sym) Defines sym with the run-time size of related allocation unit

Linker Command File Operator Equivalencies

NOTE: LOAD_START() and START() are equivalent, as are LOAD_END()/END() and
LOAD_SIZE()/SIZE(). The LOAD names are recommended for clarity.

224 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

The new address and dimension operators can be associated with several different kinds of allocation
units, including input items, output sections, GROUPs, and UNIONs. The following sections provide some
examples of how the operators can be used in each case.

7.5.8.7.1 Input Items

Consider an output section specification within a SECTIONS directive:
outsect:
{

s1.obj(.text)
end_of_s1 = .;
start_of_s2 = .;
s2.obj(.text)
end_of_s2 = .;

}

This can be rewritten using the START and END operators as follows:
outsect:
{

s1.obj(.text) { END(end_of_s1) }
s2.obj(.text) { START(start_of_s2), END(end_of_s2) }

}

The values of end_of_s1 and end_of_s2 will be the same as if you had used the dot operator in the
original example, but start_of_s2 would be defined after any necessary padding that needs to be added
between the two .text sections. Remember that the dot operator would cause start_of_s2 to be defined
before any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the
operator list. The operators in the list are applied to the input item that occurs immediately before the list.

7.5.8.7.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:
outsect: START(start_of_outsect), SIZE(size_of_outsect)
{

<list of input items>
}

In this case, the SIZE operator defines size_of_outsect to incorporate any padding that is required in the
output section to conform to any alignment requirements that are imposed.

The syntax for specifying the operators with an output section does not require braces to enclose the
operator list. The operator list is simply included as part of the allocation specification for an output
section.

7.5.8.7.3 GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:
GROUP
{

outsect1: { ... }
outsect2: { ... }

} load = ROM, run = RAM, START(group_start), SIZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying
code can use group_start and group_size as parameters for where to copy from and how much is to be
copied. This makes the use of .label in the source code unnecessary.

225SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

7.5.8.7.4 UNIONs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a
UNION's load space and the size of the space where its constituents are going to be copied before they
are run. Here is an example:
UNION: run = RAM, LOAD_START(union_load_addr),

LOAD_SIZE(union_ld_sz), RUN_SIZE(union_run_sz)
{

.text1: load = ROM, SIZE(text1_size) { f1.obj(.text) }

.text2: load = ROM, SIZE(text2_size) { f2.obj(.text) }
}

Here union_ld_sz is going to be equal to the sum of the sizes of all output sections placed in the union.
The union_run_sz value is equivalent to the largest output section in the union. Both of these symbols
incorporate any padding due to blocking or alignment requirements.

7.5.9 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing linked into
them. These areas are called holes. In special cases, uninitialized sections can also be treated as holes.
This section describes how the linker handles holes and how you can fill holes (and uninitialized sections)
with values.

7.5.9.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains either:

• Raw data for the entire section

• No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual
memory image contents of the section. When the section is loaded, this image is loaded into memory at
the section's specified starting address. The .text and .data sections always have raw data if anything was
assembled into them. Named sections defined with the .sect assembler directive also have raw data.

By default, the .bss section (see Reserve Space in the .bss Section) and sections defined with the .usect
directive (see Reserve Uninitialized Space) have no raw data (they are uninitialized). They occupy space
in the memory map but have no actual contents. Uninitialized sections typically reserve space in fast
external memory for variables. In the object file, an uninitialized section has a normal section header and
can have symbols defined in it; no memory image, however, is stored in the section.

7.5.9.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker to leave
extra space between input sections within an output section. When such a hole is created, the linker must
supply raw data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such
space is not a hole. To fill the space between output sections, see Section 7.5.3.2.

To create a hole in an output section, you must use a special type of linker assignment statement within
an output section definition. The assignment statement modifies the SPC (denoted by .) by adding to it,
assigning a greater value to it, or aligning it on an address boundary. The operators, expressions, and
syntaxes of assignment statements are described in Section 7.5.8.

226 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Command Files

The following example uses assignment statements to create holes in output sections:
SECTIONS
{

outsect:
{

file1.obj(.text)
. += 0x0100 /* Create a hole with size 0x0100 */
file2.obj(.text)

. = align(16); /* Create a hole to align the SPC */
file3.obj(.text)

}
}

The output section outsect is built as follows:

1. The .text section from file1.obj is linked in.

2. The linker creates a 256-byte hole.

3. The .text section from file2.obj is linked in after the hole.

4. The linker creates another hole by aligning the SPC on a 16-byte boundary.

5. Finally, the .text section from file3.obj is linked in.

All values assigned to the . symbol within a section refer to the relative address within the section. The
linker handles assignments to the . symbol as if the section started at address 0 (even if you have
specified a binding address). Consider the statement . = align(16) in the example. This statement
effectively aligns the file3.obj .text section to start on a 16-byte boundary within outsect. If outsect is
ultimately allocated to start on an address that is not aligned, the file3.obj .text section will not be aligned
either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use the following
statements to create a hole at the beginning or end of the output section.

.text: { .+= 0x0100; } /* Hole at the beginning */

.data: { *(.data)
. += 0x0100; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitialized section with an initialized
section to form a single output section. In this case, the linker treats the uninitialized section as a hole and
supplies data for it. The following example illustrates this method:
SECTIONS
{

outsect:
{

file1.obj(.text)
file1.obj(.bss) /* This becomes a hole */

}
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If several
uninitialized sections are linked together, the resulting output section is also uninitialized.

227SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Command Files www.ti.com

7.5.9.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The linker fills
holes with a 32-bit fill value that is replicated through memory until it fills the hole. The linker determines
the fill value as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a
fill value for the uninitialized section. Follow the section name with an = sign and a 32-bit constant. For
example:

SECTIONS
{ outsect:

{
file1.obj(.text)
file2.obj(.bss)= 0xFF00FF00 /* Fill this hole with 0xFF00FF00 */

}
}

2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the
section definition:

SECTIONS
{ outsect:fill = 0xFF00FF00 /* Fills holes with 0xFF00FF00 */

{
. += 0x0010; /* This creates a hole */
file1.obj(.text)
file1.obj(.bss) /* This creates another hole */

}
}

3. If you do not specify an initialization value for a hole, the linker fills the hole with the value specified
with the --fill_value option (see Section 7.4.10). For example, suppose the command file link.cmd
contains the following SECTIONS directive:

SECTIONS { .text: { .= 0x0100; } /* Create a 100 word hole */ }

Now invoke the linker with the --fill_value option:
cl6x --run_linker --fill_value=0xFFFFFFFF link.cmd

This fills the hole with 0xFFFFFFFF.

4. If you do not invoke the linker with the --fill_value option or otherwise specify a fill value, the linker fills
holes with 0s.

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map
along with the value the linker uses to fill it.

7.5.9.4 Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for it in the
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:
SECTIONS
{

.bss: fill = 0x12341234 /* Fills .bss with 0x12341234 */
}

Filling Sections

NOTE: Because filling a section (even with 0s) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for large
sections or holes.

228 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Object Libraries

7.6 Object Libraries

An object library is a partitioned archive file that contains object files as members. Usually, a group of
related modules are grouped together into a library. When you specify an object library as linker input, the
linker includes any members of the library that define existing unresolved symbol references. You can use
the archiver to build and maintain libraries. Section 6.1 contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable module. Normally, if an object
file that contains a function is specified at link time, the file is linked whether the function is used or not;
however, if that same function is placed in an archive library, the file is included only if the function is
referenced.

The order in which libraries are specified is important, because the linker includes only those members
that resolve symbols that are undefined at the time the library is searched. The same library can be
specified as often as necessary; it is searched each time it is included. Alternatively, you can use the
--reread_libs option to reread libraries until no more references can be resolved (see Section 7.4.13.3). A
library has a table that lists all external symbols defined in the library; the linker searches through the table
until it determines that it cannot use the library to resolve any more references.

The following examples link several files and libraries, using these assumptions:

• Input files f1.obj and f2.obj both reference an external function named clrscr.

• Input file f1.obj references the symbol origin.

• Input file f2.obj references the symbol fillclr.

• Member 0 of library libc.lib contains a definition of origin.

• Member 3 of library liba.lib contains a definition of fillclr.

• Member 1 of both libraries defines clrscr.

If you enter:
cl6x --run_linker f1.obj f2.obj liba.lib libc.lib

then:

• Member 1 of liba.lib satisfies the f1.obj and f2.obj references to clrscr because the library is searched
and the definition of clrscr is found.

• Member 0 of libc.lib satisfies the reference to origin.

• Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter:
cl6x --run_linker f1.obj f2.obj libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the --undef_sym option to
force the linker to include a library member. (See Section 7.4.30.) The next example creates an undefined
symbol rout1 in the linker's global symbol table:
cl6x --run_linker --undef_sym=rout1 libc.lib

If any member of libc.lib defines rout1, the linker includes that member.

Library members are allocated according to the SECTIONS directive default allocation algorithm; see
Section 7.5.4.

Section 7.4.13 describes methods for specifying directories that contain object libraries.

229SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Default Allocation Algorithm www.ti.com

7.7 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining, and allocating
sections. However, any memory locations or sections that you choose not to specify must still be handled
by the linker. The linker uses default algorithms to build and allocate sections within the specifications you
supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates output sections as though
the definitions in Example 7-16 were specified.

Example 7-16. Default Allocation for TMS320C6000 Devices

MEMORY
{

RAM : origin = 0x00000001, length = 0xFFFFFFFE
}

SECTIONS
{

.text : ALIGN(32) {} > RAM

.const : ALIGN(8) {} > RAM

.data : ALIGN(8) {} > RAM

.bss : ALIGN(8) {} > RAM

.cinit : ALIGN(4) {} > RAM ; cflag option only

.pinit : ALIGN(4) {} > RAM ; cflag option only

.stack : ALIGN(8) {} > RAM ; cflag option only

.far : ALIGN(8) {} > RAM ; cflag option only

.sysmem: ALIGN(8) {} > RAM ; cflag option only

.switch: ALIGN(4) {} > RAM ; cflag option only

.cio : ALIGN(4) {} > RAM ; cflag option only
}

All .text input sections are concatenated to form a .text output section in the executable output file, and all
.data input sections are combined to form a .data output section.

If you use a SECTIONS directive, the linker performs no part of the default allocation. Allocation is
performed according to the rules specified by the SECTIONS directive and the general algorithm
described next in Section 7.7.1.

7.7.1 How the Allocation Algorithm Creates Output Sections

An output section can be formed in one of two ways:

Method 1 As the result of a SECTIONS directive definition
Method 2 By combining input sections with the same name into an output section that is not defined in

a SECTIONS directive

If an output section is formed as a result of a SECTIONS directive, this definition completely determines
the section's contents. (See Section 7.5.4 for examples of how to define an output section's content.)

If an output section is formed by combining input sections not specified by a SECTIONS directive, the
linker combines all such input sections that have the same name into an output section with that name.
For example, suppose the files f1.obj and f2.obj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section for them. The linker combines the two Vectors
sections from the input files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.

By default, the linker does not display a message when it creates an output section that is not defined in
the SECTIONS directive. You can use the --warn_sections linker option (see Section 7.4.31) to cause the
linker to display a message when it creates a new output section.

230 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker-Generated Copy Tables

After the linker determines the composition of all output sections, it must allocate them into configured
memory. The MEMORY directive specifies which portions of memory are configured. If there is no
MEMORY directive, the linker uses the default configuration as shown in Example 7-16. (See
Section 7.5.3 for more information on configuring memory.)

7.7.2 Reducing Memory Fragmentation

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be
used more efficiently and increases the probability that your program will fit into memory. The algorithm
comprises these steps:

1. Each output section for which you have supplied a specific binding address is placed in memory at that
address.

2. Each output section that is included in a specific, named memory range or that has memory attribute
restrictions is allocated. Each output section is placed into the first available space within the named
area, considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a
SECTIONS directive are allocated in the order in which they are encountered. Each output section is
placed into the first available memory space, considering alignment where necessary.

7.8 Linker-Generated Copy Tables

The linker supports extensions to the link command file syntax that enable the following:

• Make it easier for you to copy objects from load-space to run-space at boot time

• Make it easier for you to manage memory overlays at run time

• Allow you to split GROUPs and output sections that have separate load and run addresses

7.8.1 A Current Boot-Loaded Application Development Process

In some embedded applications, there is a need to copy or download code and/or data from one location
to another at boot time before the application actually begins its main execution thread. For example, an
application may have its code and/or data in FLASH memory and need to copy it into on-chip memory
before the application begins execution.

One way you can develop an application like this is to create a copy table in assembly code that contains
three elements for each block of code or data that needs to be moved from FLASH into on-chip memory
at boot time:

• The load address

• The run address

• The size

The process you follow to develop such an application might look like this:

1. Build the application to produce a .map file that contains the load and run addresses of each section
that has a separate load and run placement.

2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size
of each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.

4. Run the application.

This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time a piece
of code or data is added or removed from the application, you must repeat the process in order to keep
the contents of the copy table up to date.

231SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker-Generated Copy Tables www.ti.com

7.8.2 An Alternative Approach

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and
SIZE() operators that are already part of the link command file syntax . For example, instead of building
the application to generate a .map file, the link command file can be annotated:
SECTIONS
{

.flashcode: { app_tasks.obj(.text) }
load = FLASH, run = PMEM,
LOAD_START(_flash_code_ld_start),
RUN_START(_flash_code_rn_start),
SIZE(_flash_code_size)

...
}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to create
three symbols:

Symbol Description

_flash_code_ld_start Load address of .flashcode section

_flash_code_rn_start Run address of .flashcode section

_flash_code_size Size of .flashcode section

These symbols can then be referenced from the copy table. The actual data in the copy table will be
updated automatically each time the application is linked. This approach removes step 1 of the process
described in Section 7.8.1.

While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the
copy table contents in sync with the symbols that are defined in the link command file. Ideally, the linker
would generate the boot copy table automatically. This would avoid having to build the application twice
and free you from having to explicitly manage the contents of the boot copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Section 7.5.8.7.

232 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker-Generated Copy Tables

7.8.3 Overlay Management Example

Consider an application which contains a memory overlay that must be managed at run time. The memory
overlay is defined using a UNION in the link command file as illustrated in Example 7-17:

Example 7-17. Using a UNION for Memory Overlay

SECTIONS
{

...

UNION
{

GROUP
{

.task1: { task1.obj(.text) }

.task2: { task2.obj(.text) }

} load = ROM, LOAD_START(_task12_load_start), SIZE(_task12_size)

GROUP
{

.task3: { task3.obj(.text) }

.task4: { task4.obj(.text) }

} load = ROM, LOAD_START(_task34_load_start), SIZE(_task_34_size)

} run = RAM, RUN_START(_task_run_start)

...
}

The application must manage the contents of the memory overlay at run time. That is, whenever any
services from .task1 or .task2 are needed, the application must first ensure that .task1 and .task2 are
resident in the memory overlay. Similarly for .task3 and .task4.

To affect a copy of .task1 and .task2 from ROM to RAM at run time, the application must first gain access
to the load address of the tasks (_task12_load_start), the run address (_task_run_start), and the size
(_task12_size). Then this information is used to perform the actual code copy.

7.8.4 Generating Copy Tables Automatically With the Linker

The linker supports extensions to the link command file syntax that enable you to do the following:

• Identify any object components that may need to be copied from load space to run space at some
point during the run of an application

• Instruct the linker to automatically generate a copy table that contains (at least) the load address, run
address, and size of the component that needs to be copied

• Instruct the linker to generate a symbol specified by you that provides the address of a
linker-generated copy table. For instance, Example 7-17 can be written as shown in Example 7-18:

233SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker-Generated Copy Tables www.ti.com

Example 7-18. Produce Address for Linker Generated Copy Table

SECTIONS
{

...

UNION
{

GROUP
{

.task1: { task1.obj(.text) }

.task2: { task2.obj(.text) }

} load = ROM, table(_task12_copy_table)

GROUP
{

.task3: { task3.obj(.text) }

.task4: { task4.obj(.text) }

} load = ROM, table(_task34_copy_table)

} run = RAM
...

}

Using the SECTIONS directive from Example 7-18 in the link command file, the linker generates two copy
tables named: _task12_copy_table and _task34_copy_table. Each copy table provides the load address,
run address, and size of the GROUP that is associated with the copy table. This information is accessible
from application source code using the linker-generated symbols, _task12_copy_table and
_task34_copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you do not have to worry about the creation or maintenance of a copy table. You can
reference the address of any copy table generated by the linker in C/C++ or assembly source code,
passing that value to a general purpose copy routine which will process the copy table and affect the
actual copy.

7.8.5 The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator can be
applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular
table() specification can be accessed through a symbol specified by you that is provided as an argument
to the table() operator. The linker creates a symbol with this name and assigns it the address of the copy
table as the value of the symbol. The copy table can then be accessed from the application using the
linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a
table() operator is applied to a GROUP, then none of that GROUP's members may be marked with a
table() specification. The linker detects violations of these rules and reports them as warnings, ignoring
each offending use of the table() specification. The linker does not generate a copy table for erroneous
table() operator specifications.

234 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker-Generated Copy Tables

7.8.6 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-time
copy table. For example, the link command file for the boot-loaded application described in Section 7.8.2
can be rewritten as follows:
SECTIONS
{

.flashcode: { app_tasks.obj(.text) }
load = FLASH, run = PMEM,

table(BINIT)
...

}

For this example, the linker creates a copy table that can be accessed through a special linker-generated
symbol, ___binit__, which contains the list of all object components that need to be copied from their load
location to their run location at boot-time. If a link command file does not contain any uses of table(BINIT),
then the ___binit__ symbol is given a value of -1 to indicate that a boot-time copy table does not exist for
a particular application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in
the context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to
a GROUP, then none of that GROUP's members may be marked with table(BINIT).The linker detects
violations of these rules and reports them as warnings, ignoring each offending use of the table(BINIT)
specification.

7.8.7 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table()
operator to several different object components. In addition, if you want to manage a particular object
component in multiple ways, you can apply more than one table() operator to it. Consider the link
command file excerpt in Example 7-19:

Example 7-19. Linker Command File to Manage Object Components

SECTIONS
{

UNION
{

.first: { a1.obj(.text), b1.obj(.text), c1.obj(.text) }
load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

.second: { a2.obj(.text), b2.obj(.text) }
load = EMEM, run = PMEM, table(_second_ctbl)

}

.extra: load = EMEM, run = PMEM, table(BINIT)

...
}

In this example, the output sections .first and .extra are copied from external memory (EMEM) into
program memory (PMEM) at boot time while processing the BINIT copy table. After the application has
started executing its main thread, it can then manage the contents of the overlay using the two overlay
copy tables named: _first_ctbl and _second_ctbl.

235SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Load address Run address Size (0 if load data is compressed)

Rec size Rec cnt

Linker-Generated Copy Tables www.ti.com

7.8.8 Compression Support

When automatically generating copy tables, the linker provides a way to compress the load-space data.
This can reduce the read-only memory foot print. This compressed data can be decompressed while
copying the data from load space to run space.

You can specify compression in two ways:

• The linker command line option --copy_compression=compression_kind can be used to apply the
specified compression to any output section that has a table() operator applied to it.

• The table() operator now accepts a compression parameter. The syntax is: .

table(name , compression= compression_kind)
The compression_kind can be one of the following types:

– off. Don't compress the data.

– rle. Compress data using Run Length Encoding.

– lzss. Compress data using Lempel-Ziv Storer and Symanski compression.
A table() operator without the compression keyword uses the compression kind specified using the
command line option --copy_compression.

When you choose compression, it is not guaranteed that the linker will compress the load data. The linker
compresses load data only when such compression reduces the overall size of the load space. In some
cases even if the compression results in smaller load section size the linker does not compress the data if
the decompression routine offsets for the savings.

For example, assume RLE compression reduces the size of section1 by 30 bytes. Also assume the RLE
decompression routine takes up 40 bytes in load space. By choosing to compress section1 the load space
is increased by 10 bytes. Therefore, the linker will not compress section1. On the other hand, if there is
another section (say section2) that can benefit by more than 10 bytes from applying the same
compression then both sections can be compressed and the overall load space is reduced. In such cases
the linker compresses both the sections.

You cannot force the linker to compress the data when doing so does not result in savings.

7.8.8.1 Compressed Copy Table Format

The copy table format is the same irrespective of the compression. The size field of the copy record is
overloaded to support compression. Figure 7-5 illustrates the compressed copy table layout.

Figure 7-5. Compressed Copy Table

In Figure 7-5, if the size in the copy record is non-zero it represents the size of the data to be copied, and
also means that the size of the load data is the same as the run data. When the size is 0, it means that
the load data is compressed.

236 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

32-bit handler address 1

32-bit handler address N

_TI_Handler_Table_Base:

_TI_Handler_Table_Limit:

www.ti.com Linker-Generated Copy Tables

7.8.8.2 Compressed Section Representation in the Object File

When the load data is not compressed, the object file can have only one section with a different load and
run address.

Consider the following table() operation in the linker command file.
SECTIONS
{

.task1: load = ROM, run = RAM, table(_task1_table)
}

The output object file has one output section named .task1 which has a different load and run addresses.
This is possible because the load space and run space have identical data when the section is not
compressed.

Alternatively, consider the following:
SECTIONS
{

.task1: load = ROM, run = RAM, table(_task1_table, compression=rle)
}

If the linker compresses the .task1 section then the load space data and the run space data are different.
The linker creates the following two sections:

• .task1 : This section is uninitialized. This output section represents the run space image of section
task1.

• .task1.load : This section is initialized. This output section represents the load space image of the
section task1. This section usually is considerably smaller in size than .task1 output section.

7.8.8.3 Compressed Data Layout

The compressed load data has the following layout:

8-bit index Compressed data

The first eight bits of the load data are the handler index. This handler index is used to index into a
handler table to get the address of a handler function that knows how to decode the data that follows. The
handler table is a list of 32-bit function pointers as shown in Figure 7-6.

Figure 7-6. Handler Table

The linker creates a separate output section for the load and run space. For example, if .task1.load is
compressed using RLE, the handler index points to an entry in the handler table that has the address of
the run-time-support routine __TI_decompress_rle().

237SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker-Generated Copy Tables www.ti.com

7.8.8.4 Run-Time Decompression

During run time you call the run-time-support routine copy_in() to copy the data from load space to run
space. The address of the copy table is passed to this routine. First the routine reads the record count.
Then it repeats the following steps for each record:

1. Read load address, run address and size from record.

2. If size is zero go to step 5.

3. Call memcpy passing the run address, load address and size.

4. Go to step 1 if there are more records to read.

5. Read the first byte from load address. Call this index.

6. Read the handler address from (&__TI_Handler_Base)[index].

7. Call the handler and pass load address + 1 and run address.

8. Go to step 1 if there are more records to read.

The routines to handle the decompression of load data are provided in the run-time-support library.

7.8.8.5 Compression Algorithms

Run Length Encoding (RLE):

8-bit index Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using run length encoded (RLE) format. C6000 uses a
simple run length encoding that can be decompressed using the following algorithm:

1. Read the first byte, Delimiter (D).

2. Read the next byte (B).

3. If B != D copy B to the output buffer and go to step 2.

4. Read the next byte (L).

5. If L > 0 and L < 4 copy D to the output buffer L times. Go to step 2.

6. If L = 4 read the next byte (B'). Copy B' to the output buffer L times. Go to step 2.

7. Read the next 16 bits (LL).

8. Read the next byte (C).

9. If C != 0 copy C to the output buffer L times. Go to step 2.

10. End of processing.

The C6000 run-time support library has a routine __TI_decompress_rle() to decompress data compressed
using RLE. The first argument to this function is the address pointing to the byte after the 8-bit index. The
second argument is the run address from the C auto initialization record.

Lempel-Ziv Storer and Szymanski Compression (LZSS):

8-bit index Data compressed using LZSS

The data following the 8-bit index is compressed using LZSS compression. The C6000 run-time-support
library has the routine __TI_decompress_lzss() to decompress the data compressed using LZSS. The first
argument to this function is the address pointing to the byte after the 8-bit Index, and the second argument
is the run address from the C auto initialization record.

238 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker-Generated Copy Tables

7.8.9 Copy Table Contents

In order to use a copy table that is generated by the linker, you must be aware of the contents of the copy
table. This information is included in a new run-time-support library header file, cpy_tbl.h, which contains a
C source representation of the copy table data structure that is automatically generated by the linker.

Example 7-20 shows the TMS320C6000 copy table header file.

Example 7-20. TMS320C6000 cpy_tbl.h File

/**/
/* cpy_tbl.h */
/* */
/* Copyright (c) 2011 Texas Instruments Incorporated */
/* */
/* Specification of copy table data structures which can be automatically */
/* generated by the linker (using the table() operator in the LCF). */
/* */
/**/

/**/
/* Copy Record Data Structure */
/**/
typedef struct copy_record
{

unsigned int load_addr;
unsigned int run_addr;
unsigned int size;

} COPY_RECORD;

/**/
/* Copy Table Data Structure */
/**/
typedef struct copy_table
{

unsigned short rec_size;
unsigned short num_recs;
COPY_RECORD recs[1];

} COPY_TABLE;

/**/
/* Prototype for general purpose copy routine. */
/**/
extern void copy_in(COPY_TABLE *tp);

#ifdef __cplusplus
} /* extern "C" namespace std */

#ifndef _CPP_STYLE_HEADER
using std::COPY_RECORD;
using std::COPY_TABLE;
using std::copy_in;
#endif /* _CPP_STYLE_HEADER */
#endif /* __cplusplus */
#endif /* !_CPY_TBL */

For each object component that is marked for a copy, the linker creates a COPY_RECORD object for it.
Each COPY_RECORD contains at least the following information for the object component:

• The load address

• The run address

• The size

239SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker-Generated Copy Tables www.ti.com

The linker collects all COPY_RECORDs that are associated with the same copy table into a
COPY_TABLE object. The COPY_TABLE object contains the size of a given COPY_RECORD, the
number of COPY_RECORDs in the table, and the array of COPY_RECORDs in the table. For instance, in
the BINIT example in Section 7.8.6, the .first and .extra output sections will each have their own
COPY_RECORD entries in the BINIT copy table. The BINIT copy table will then look like this:
COPY_TABLE __binit__ = { 12, 2,

{ <load address of .first>,
<run address of .first>,
<size of .first> },

{ <load address of .extra>,
<run address of .extra>,
<size of .extra> } };

7.8.10 General Purpose Copy Routine

The cpy_tbl.h file in Example 7-20 also contains a prototype for a general-purpose copy routine, copy_in(),
which is provided as part of the run-time-support library. The copy_in() routine takes a single argument:
the address of a linker-generated copy table. The routine then processes the copy table data object and
performs the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in
Example 7-21.

Example 7-21. Run-Time-Support cpy_tbl.c File

/**/
/* cpy_tbl.c */
/* */
/* Copyright (c) 2011 Texas Instruments Incorporated */
/* */
/* General purpose copy routine. Given the address of a link-generated */
/* COPY_TABLE data structure, effect the copy of all object components */
/* that are designated for copy via the corresponding LCF table() operator. */
/* */
/**/
#include <cpy_tbl.h>
#include <string.h>

typedef void (*handler_fptr)(const unsigned char *in, unsigned char *out);

/**/
/* COPY_IN() */
/**/
void copy_in(COPY_TABLE *tp)
{

unsigned short I;
for (I = 0; I < tp->num_recs; I++)
{

COPY_RECORD crp = tp->recs[i];
unsigned char *ld_addr = (unsigned char *)crp.load_addr;
unsigned char *rn_addr = (unsigned char *)crp.run_addr;

if (crp.size)
{

/*--*/
/* Copy record has a non-zero size so the data is not compressed. */
/* Just copy the data. */
/*--*/
memcpy(rn_addr, ld_addr, crp.size);

}
}

}

240 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker-Generated Copy Tables

7.8.11 Linker-Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates. Each copy
table symbol is defined with the address value of the input section that contains the corresponding copy
table.

The linker generates a unique name for each overlay copy table input section. For example,
table(_first_ctbl) would place the copy table for the .first section into an input section called
.ovly:_first_ctbl. The linker creates a single input section, .binit, to contain the entire boot-time copy table.

Example 7-22 illustrates how you can control the placement of the linker-generated copy table sections
using the input section names in the link command file.

Example 7-22. Controlling the Placement of the Linker-Generated Copy Table Sections

SECTIONS
{

UNION
{

.first: { a1.obj(.text), b1.obj(.text), c1.obj(.text) }
load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

.second: { a2.obj(.text), b2.obj(.text) }
load = EMEM, run = PMEM, table(_second_ctbl)

}

.extra: load = EMEM, run = PMEM, table(BINIT)

...

.ovly: { } > BMEM

.binit: { } > BMEM
}

For the link command file in Example 7-22, the boot-time copy table is generated into a .binit input section,
which is collected into the .binit output section, which is mapped to an address in the BMEM memory
area. The _first_ctbl is generated into the .ovly:_first_ctbl input section and the _second_ctbl is generated
into the .ovly:_second_ctbl input section. Since the base names of these input sections match the name of
the .ovly output section, the input sections are collected into the .ovly output section, which is then
mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated copy table sections, they are
allocated according to the linker's default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input section in
the same output section. The linker does not allow a copy table section that was created from a partial link
session to be used as input to a succeeding link session.

241SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker-Generated Copy Tables www.ti.com

7.8.12 Splitting Object Components and Overlay Management

In previous versions of the linker, splitting sections that have separate load and run placement instructions
was not permitted. This restriction was because there was no effective mechanism for you, the developer,
to gain access to the load address or run address of each one of the pieces of the split object component.
Therefore, there was no effective way to write a copy routine that could move the split section from its load
location to its run location.

However, the linker can access both the load address and run address of every piece of a split object
component. Using the table() operator, you can tell the linker to generate this information into a copy table.
The linker gives each piece of the split object component a COPY_RECORD entry in the copy table
object.

For example, consider an application which has seven tasks. Tasks 1 through 3 are overlaid with tasks 4
through 7 (using a UNION directive). The load placement of all of the tasks is split among four different
memory areas (LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined as part of memory area
PMEM. You must move each set of tasks into the overlay at run time before any services from the set are
used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have
all the information needed to move either group of tasks into the memory overlay as shown in
Example 7-23. Example 7-24 illustrates a possible driver for such an application.

Example 7-23. Creating a Copy Table to Access a Split Object Component

SECTIONS
{

UNION
{

.task1to3: { *(.task1), *(.task2), *(.task3) }
load >> LMEM1 | LMEM2 | LMEM4, table(_task13_ctbl)

GROUP
{

.task4: { *(.task4) }

.task5: { *(.task5) }

.task6: { *(.task6) }

.task7: { *(.task7) }

} load >> LMEM1 | LMEM3 | LMEM4, table(_task47_ctbl)

} run = PMEM

...

.ovly: > LMEM4
}

242 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker-Generated Copy Tables

Example 7-24. Split Object Component Driver

#include <cpy_tbl.h>

extern far COPY_TABLE task13_ctbl;
extern far COPY_TABLE task47_ctbl;

extern void task1(void);
...
extern void task7(void);

main()
{

...
copy_in(&task13_ctbl);
task1();
task2();
task3();
...

copy_in(&task47_ctbl);
task4();
task5();
task6();
task7();
...

}

You must declare a COPY_TABLE object as far to allow the overlay copy table section placement to be
independent from the other sections containing data objects (such as .bss).

The contents of the .task1to3 section are split in the section's load space and contiguous in its run space.
The linker-generated copy table, _task13_ctbl, contains a separate COPY_RECORD for each piece of the
split section .task1to3. When the address of _task13_ctbl is passed to copy_in(), each piece of .task1to3
is copied from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker performs
the GROUP split by applying the split operator to each member of the GROUP in order. The copy table for
the GROUP then contains a COPY_RECORD entry for every piece of every member of the GROUP.
These pieces are copied into the memory overlay when the _task47_ctbl is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION or
UNION member. The linker does not permit a split operator to be applied to the run placement of either a
UNION or of a UNION member. The linker detects such violations, emits a warning, and ignores the
offending split operator usage.

243SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Partial (Incremental) Linking www.ti.com

7.9 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known as partial
linking or incremental linking. Partial linking allows you to partition large applications, link each part
separately, and then link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

• The intermediate files produced by the linker must have relocation information. Use the --relocatable
option when you link the file the first time. (See Section 7.4.2.2.)

• Intermediate files must have symbolic information. By default, the linker retains symbolic information in
its output. Do not use the --no_sym_table option if you plan to relink a file, because --no_sym_table
strips symbolic information from the output module. (See Section 7.4.19.)

• Intermediate link operations should be concerned only with the formation of output sections and not
with allocation. All allocation, binding, and MEMORY directives should be performed in the final link.

When the ELF object file format is used, input sections are not combined into output sections during a
partial link unless a matching SECTIONS directive is specified in the link step command file.

• If the intermediate files have global symbols that have the same name as global symbols in other files
and you want them to be treated as static (visible only within the intermediate file), you must link the
files with the --make_static option (see Section 7.4.14.1).

• If you are linking C code, do not use --ram_model or --rom_model until the final linker. Every time you
invoke the linker with the --ram_model or --rom_model option, the linker attempts to create an entry
point. (See Section 7.4.22.)

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the --relocatable option to retain relocation information in the
output file tempout1.out.
cl6x --run_linker --relocatable --output_file=tempout1 file1.com

file1.com contains:
SECTIONS
{

ss1: {
f1.obj
f2.obj
.
.
.
fn.obj
}

}

Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the
output file tempout2.out.
cl6x --run_linker --relocatable --output_file=tempout2 file2.com

file2.com contains:
SECTIONS
{

ss2: {
g1.obj
g2.obj
.
.
.
gn.obj
}

}

Step 3: Link tempout1.out and tempout2.out.
cl6x --run_linker --map_file=final.map --output_file=final.out tempout1.out
tempout2.out

244 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linking C/C++ Code

7.10 Linking C/C++ Code

The C/C++ compiler produces assembly language source code that can be assembled and linked. For
example, a C program consisting of modules prog1, prog2, etc., can be assembled and then linked to
produce an executable file called prog.out:
cl6x --run_linker --rom_model --output_file prog.out prog1.obj prog2.obj ...
rts6200.lib

The --rom_model option tells the linker to use special conventions that are defined by the C/C++
environment.

The archive libraries shipped by TI contain C/C++ run-time-support functions.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.

For more information about the TMS320C6000 C/C++ language, including the run-time environment and
run-time-support functions, see the TMS320C6000 Optimizing Compiler User's Guide.

7.10.1 Run-Time Initialization

All C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap
routine, also known as the boot.obj object module. The symbol _c_int00 is defined as the program entry
point and is the start of the C boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is
automatically linked in from the run-time-support library. When a program begins running, it executes
boot.obj first. The boot.obj symbol contains code and data for initializing the run-time environment and
performs the following tasks:

• Sets up the system stack and configuration registers

• Processes the run-time .cinit initialization table and autoinitializes global variables (when the linker is
invoked with the --rom_model option)

• Disables interrupts and calls _main

The run-time-support object libraries contain boot.obj. You can:

• Use the archiver to extract boot.obj from the library and then link the module in directly.

• Include the appropriate run-time-support library as an input file (the linker automatically extracts
boot.obj when you use the --ram_model or --rom_model option).

245SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Initialization
tables

(EXT_MEM)

.bss
section

(D_MEM)

Boot
routine

.cinit
section

Loader

Object file Memory

cint

Linking C/C++ Code www.ti.com

7.10.2 Object Libraries and Run-Time Support

The TMS320C6000 Optimizing Compiler User's Guide describes additional run-time-support functions that
are included in rts.src. If your program uses any of these functions, you must link the appropriate
run-time-support library with your object files.

You can also create your own object libraries and link them. The linker includes and links only those
library members that resolve undefined references.

7.10.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory pool used
by the malloc() functions and the run-time stacks, respectively. You can set the size of these by using the
--heap_size or --stack_size option and specifying the size of the section as a 4-byte constant immediately
after the option. If the options are not used, the default size of the heap is 1K bytes and the default size of
the stack is 1K bytes.

See Section 7.4.11 for setting heap sizes and Section 7.4.26 for setting stack sizes.

7.10.4 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

Using this method, the .cinit section is loaded into memory along with all the other initialized sections. The
linker defines a special symbol called cinit that points to the beginning of the initialization tables in
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by
.cinit) into the specified variables in the .bss section. This allows initialization data to be stored in slow
external memory and copied to fast external memory each time the program starts.

Figure 7-7 illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into slow external memory.

Figure 7-7. Autoinitialization at Run Time

7.10.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit section's
header. This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no
space in the memory map.) The linker also sets the cinit symbol to -1 (normally, cinit points to the
beginning of the initialization tables). This indicates to the boot routine that the initialization tables are not
present in memory; accordingly, no run-time initialization is performed at boot time.

246 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

.bss

.cinit Loader

Object file Memory

www.ti.com Linking C/C++ Code

A loader must be able to perform the following tasks to use initialization at load time:

• Detect the presence of the .cinit section in the object file.

• Determine that STYP_COPY is set in the .cinit section header, so that it knows not to copy the .cinit
section into memory.

• Understand the format of the initialization tables.

Figure 7-8 illustrates the initialization of variables at load time.

Figure 7-8. Initialization at Load Time

7.10.6 The --rom_model and --ram_model Linker Options

The following list outlines what happens when you invoke the linker with the --ram_model or --rom_model
option.

• The symbol _c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C
boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is automatically linked in from the
appropriate run-time-support library.

• The .cinit output section is padded with a termination record to designate to the boot routine
(autoinitialize at run time) or the loader (initialize at load time) when to stop reading the initialization
tables.

• When you initialize at load time (--ram_model option):

– The linker sets cinit to -1. This indicates that the initialization tables are not in memory, so no
initialization is performed at run time.

– The STYP_COPY flag (0010h) is set in the .cinit section header. STYP_COPY is the special
attribute that tells the loader to perform initialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit section.

• When you autoinitialize at run time (--rom_model option), the linker defines cinit as the starting address
of the .cinit section. The C boot routine uses this symbol as the starting point for autoinitialization.

247SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Example www.ti.com

7.11 Linker Example

This example links three object files named demo.obj, ctrl.obj, and tables.obj and creates a program called
demo.out.

Assume that target memory has the following program memory configuration:

Address Range Contents
0x00000000 to 0x00001000 SLOW_MEM
0x00001000 to 0x00002000 FAST_MEM
0x08000000 to 0x08000400 EEPROM

The output sections are constructed in the following manner:

• Executable code, contained in the .text sections of demo.obj, fft.obj, and tables.obj, is linked into
program memory ROM.

• Variables, contained in the var_defs section of demo.obj, are linked into data memory in block
FAST_MEM_2.

• Tables of coefficients in the .data sections of demo.obj, tables.obj, and fft.obj are linked into
FAST_MEM_1. A hole is created with a length of 100 and a fill value of 0x07A1C.

• The xy section form demo.obj, which contains buffers and variables, is linked by default into page 1 of
the block STACK, since it is not explicitly linked.

• Executable code, contained in the .text sections of demo.obj, ctrl.obj, and tables.obj, must be linked
into FAST_MEM.

• A set of interrupt vectors, contained in the .intvecs section of tables.obj, must be linked at address
0x00000000.

• A table of coefficients, contained in the .data section of tables.obj, must be linked into EEPROM. The
remainder of block EEPROM must be initialized to the value 0xFF00FF00.

• A set of variables, contained in the .bss section of ctrl.obj, must be linked into SLOW_MEM and
preinitialized to 0x00000100.

• The .bss sections of demo.obj and tables.obj must be linked into SLOW_MEM.

Example 7-25 shows the link command file for this example. Example 7-26 shows the map file.

248 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Linker Example

Example 7-25. Linker Command File, demo.cmd

/**/
/*** Specify Linker Options ***/
/**/
--entry_point SETUP /* Define the program entry point */
--output_file=demo.out /* Name the output file */
--map_file=demo.map /* Create an output map file */
/**/
/*** Specify the Input Files ***/
/**/
demo.obj
ctrl.obj
tables.obj
/**/
/*** Specify the Memory Configurations ***/
/**/
MEMORY
{

FAST_MEM : org = 0x00000000 len = 0x00001000
SLOW_MEM : org = 0x00001000 len = 0x00001000
EEPROM : org = 0x08000000 len = 0x00000400

}
/**/
/* Specify the Output Sections ***/
/**/
SECTIONS
{

.text : {} > FAST_MEM /* Link all .text sections into ROM */

.intvecs : {} > 0x0 /* Link interrupt vectors at 0x0 */

.data : /* Link .data sections */
{

tables.obj(.data)
. = 0x400; /* Create hole at end of block */

} = 0xFF00FF00 > EEPROM /* Fill and link into EEPROM */
ctrl_vars: /* Create new ctrl variables section */
{

ctrl.obj(.bss)
} = 0x00000100 > SLOW_MEM /* Fill with 0x100 and link into RAM */
.bss : {} > SLOW_MEM /* Link remaining .bss sections into RAM */

}
/**/
/*** End of Command File ***/
/**/

Invoke the linker by entering the following command:
cl6x --run_linker demo.cmd

This creates the map file shown in Example 7-26 and an output file called demo.out that can be run on a
TMS320C6000.

249SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Linker Example www.ti.com

Example 7-26. Output Map File, demo.map

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: 0

MEMORY CONFIGURATION

name origin length used attributes fill

-------- -------- --------- -------- ---------- --------
FAST_MEM 00000000 000001000 00000078 RWIX
SLOW_MEM 00001000 000001000 00000502 RWIX
EEPROM 08000000 000000400 00000400 RWIX

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
.text 0 00000000 00000064

00000000 00000030 demo.obj (.text)
00000030 00000000 tables.obj (.text)
00000030 00000010 --HOLE-- [fill = 00000000]
00000040 00000024 ctrl.obj (.text)

.intvecs 0 00000000 00000014
00000000 00000014 tables.obj (.intvecs)

.data 0 08000000 00000400
08000000 00000004 tables.obj (.data)
08000004 000003fc --HOLE-- [fill = ff00ff00]
08000400 00000000 ctrl.obj (.data)
08000400 00000000 demo.obj (.data)

ctrl_vars 0 00001000 00000500
00001000 00000500 ctrl.obj (.bss) [fill = 00000100]

.bss 0 00001500 00000002 UNINITIALIZED
00001500 00000002 demo.obj (.bss)
00001502 00000000 tables.obj (.bss)

GLOBAL SYMBOLS

address name address name
-------- ---- -------- ----
00001500 $bss 00000000 .text
00001500 .bss 00000000 _x42
08000000 .data 00000018 _SETUP
00000000 .text 00000040 _fill_tab
00000018 _SETUP 00000064 etext
00000040 _fill_tab 00001500 $bss
00000000 _x42 00001500 .bss
08000400 edata 00001502 end
00001502 end 08000000 gvar
00000064 etext 08000000 .data
08000000 gvar 08000400 edata
[11 symbols]

250 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Dynamic Linking with the C6000 Code Generation Tools

7.12 Dynamic Linking with the C6000 Code Generation Tools

The C6000 v7.2 Code Generation Tools (CGT) support dynamic linking provided you build with EABI. If
you are not already familiar with the limitations of EABI support in the C6000 compiler, please see
http://processors.wiki.ti.com/index.php/EABI_Support_in_C6000_Compiler and The C6000 Embedded
Application Binary Interface Application Report (SPRAB89).

7.12.1 Static vs Dynamic Linking

Static linking is the traditional process of combining relocatable object files and static libraries into a static
link unit: either an ELF executable file (.exe) or an ELF shared object (.so). The term object is used to
refer generically to either.

7.12.1.1 Code Size Reduction

A program consists of exactly one executable file (also commonly known as a client application) and any
additional shared objects (such as libraries) that it depends on to satisfy any undefined references. If
multiple executables depend on the same library, they can share a single copy of its code (hence the
“shared” in “shared object”), thereby significantly reducing the memory requirements of the system.

A dynamic shared object (DSO), as the name implies, can be shared among several applications that may
be running one-at-a-time in a single threaded environment, or at the same time in a multi-threaded
environment. Rather than making a separate copy of the DSO code in memory for each application that
needs to use it, a single version of the code can reside in one location (like ROM) where references to its
functions can be resolved as the executables and other DSOs that use it are loaded and dynamically
linked.

7.12.1.2 Binding Time

In a conventionally linked static executable, symbols are bound to addresses and library code is bound to
the executable at link-time, so the library that the executable is bound to at link-time is the one that it will
always use, regardless of changes or defect fixes that are made to the library.

In a static shared library, symbols are still bound to addresses at link-time, but the library code is not
bound to the executable that uses the library until run-time.

With a dynamic shared library, decisions about binding library symbols to addresses and resolving symbol
references between a dynamic shared library and the other objects that use it (or are used by it) are
delayed until actual load-time. This allows you to load a shared library when its services are needed, and
unload it when its services are not needed. Thus, making more effective use of limited target memory
space.

7.12.1.3 Modular Development

Dynamically linking encourages modular development. The interface for a dynamic shared object is
explicitly defined via the importing and exporting of global symbols. A cleanly defined interface for a
dynamic shared object will tend to improve the cohesion of the code that implements the services
provided by a given dynamic object.

7.12.1.4 Recommended Reading

For a more detailed discussion of the benefits and disadvantages of using dynamic executables and
dynamic shared objects, please refer to available literature on the subject, including John R. Levine's
excellent book Linkers & Loaders (ISBN-13: 978-1-55860-496-4).

251SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/EABI_Support_in_C6000_Compiler
http://www.ti.com/lit/pdf/sprab89
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

DSP Memory

Application Tasks

Drivers

RTOS
(DSPBIOS)

DSP

Dynamic Linking with the C6000 Code Generation Tools www.ti.com

7.12.2 Embedded Application Binary Interface (EABI) Required

All software components in a system that uses the Dynamic Linking Model must use the EABI Run-time
model. The EABI Run-Time Model can be specified using the --abi=eabi option.

The compiler generates object files in ELF object file format when EABI is specified. The C6000 CGT
makes use of the industry-standard dynamic linking mechanisms that are detailed in the ELF Specification
(Tool Interface Standard).

Specifically, for OMAP developers that are using devices with ROMed code, you must be sure that the
ROMed code has been built using the EABI model. Similarly, if your application uses BIOS, you need to
ensure that the BIOS version that you are using has been built using the EABI model. Finally, for
developers that are relying on Code Composer Studio (CCS) to run and/or debug their application, you
must use CCS version 4 or later (CCS ELF support begins in CCS version 4).

7.12.3 Bare-Metal Dynamic Linking Model

The bare-metal dynamic linking model is intended to support an application environment in which a Real
Time Operating System (RTOS) is loaded and running on a DSP processor.

7.12.3.1 Consider a Static DSP Application

First, consider an example of a basic DSP run-time model. If the RTOS and the applications that use it are
built as a single static executable, the resulting system will look something like this:

Figure 7-9. A Basic DSP Run-Time Model

In this scenario, the DSP application is a single static executable file that contains: the RTOS, any
required driver functions, and all tasks that the application needs to carry out. All of the addresses in the
static executable are bound at link-time, they cannot be relocated at load-time. Execution of the DSP
application will proceed from the application's entry point.

252 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Loader

GPP OS

GPP

GPP File
System

DSP Memory

DSP Dynamic Lib

Dynamically
Loaded Task

DSP Dynamic Exe

Application Tasks

Drivers

RTOS
(DSPBIOS)

DSP

DSP Dynamic Exe

DSP Dynamic Lib

www.ti.com Dynamic Linking with the C6000 Code Generation Tools

7.12.3.2 Make it Dynamic

In a dynamic linking system you can build dynamic modules that are loaded and relocated by a dynamic
loader at run time. The dynamic loader can also perform dynamic symbol resolution: resolving symbol
references from dynamic modules with the symbol definitions from other dynamic modules. The dynamic
linking model supports the creation of such dynamic modules. In particular, it supports creating dynamic
executables and dynamic libraries.

A dynamic executable:

• Will have a dynamic segment

• Can export/import symbols

• Is optionally relocatable (can contain dynamic relocations)

• Must have an entry point

• Can be created using -c/-cr compiler options

• Must use far DP or absolute addressing to access imported data, but can use near DP addressing to
access its own data

A dynamic library:

• Will have a dynamic segment

• Can export/import symbols

• Is relocatable

• Does not require an entry point

• Cannot be created using -c/-cr compiler option

• Must use far DP or absolute addressing to access its own data as well as data that it imports from
other modules

Figure 7-10. Dynamic Linking Model

If we convert the earlier RTOS example into a dynamic system, the RTOS part of the system is still built
like an executable and is assumed to be loaded by traditional means (bootstrap loader) and set running on
the DSP by a host application.

Application tasks can be built as dynamic libraries that can then be loaded by the dynamic loader and
linked against the RTOS that is already loaded and running on the DSP. In this scenario, the RTOS is a
dynamic executable and is also sometimes referred to as the base image. The dynamic library is
dynamically linked against the RTOS base image at load time.

253SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

DSP Memory

DSP Dynamic Lib

Dynamically
Loaded Task

I/O

DSP Dynamic Exe

Application Tasks

Drivers

Loader

RTOS
(DSPBIOS)

DSP

DSP Dynamic Lib

Dynamic Linking with the C6000 Code Generation Tools www.ti.com

In Figure 7-10, the dynamic loader is running on a General Purpose Processor (GPP) and is able to
interact with the user to load and unload dynamic library components onto the DSP as needed. Another
scenario is to load the dynamic loader as part of the RTOS base image executable:

Figure 7-11. Base Image Executable

An example of this scenario is the reference implementation of the C6000 dynamic loader. It is written to
be built and run as a dynamic executable base image itself. It contains an interactive user interface which
allows the user to identify their own base image, load and link dynamic libraries against that base image,
and then execute a function that is defined in the dynamic library. For more details about the reference
implementation of the dynamic loader, please see the Dynamic Loader wiki article.

7.12.3.3 Symbol Resolution

A dynamic library in a dynamic DSP application can utilize services that are provided by the RTOS. These
functions in the RTOS that are callable from a dynamic library must be exported when the RTOS is built.
Similarly, a dynamic library must import any function or data object symbols that are part of the RTOS
when the dynamic library is built.

Exported symbols in a dynamic object, dynA, are available for use by any other dynamic object that links
with dynA. When a dynamic object imports a symbol, it is asserting that when the object is loaded, the
definition of that symbol must be contained in a dynamic object that is already loaded or one that is
required to be loaded. The symbol importing and exporting mechanisms lie at the core of how dynamic
objects are designed to interact with each other. This subject is explored in more detail in
Section 7.12.5.1.

7.12.4 Building a Dynamic Executable

A dynamic executable is essentially a statically linked executable file that contains extra information in the
form of a dynamic segment that can be used when a dynamic library is loaded and needs symbols that
are defined in the dynamic executable.

In the sample system described here, the reference implementation of the dynamic loader (dl6x.6x) is built
as a base image. This base image also contains the basic I/O functions and some run-time-support (RTS)
functions. The base image should export these I/O and RTS functions. These symbols will then become
available to a dynamic library when it is dynamically loaded and linked against the dynamic executable.

254 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_EABI:Dynamic_Loader
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Dynamic Linking with the C6000 Code Generation Tools

7.12.4.1 Exporting Symbols

To accomplish exporting of symbols, there are two methods available:

• Recommended: Declare exported symbols explicitly in the source of the dynamic executable using
__declspec(dllexport).

For example, if you want to export exp_func from the dynamic executable, you can declare it in your
source as follows:
__declspec(dllexport) int exp_func();

• Use the --export option at link time. You can specify one or more symbols to be exported with
--export=symbol on the linker command line or in a linker command file. For example, you could export
exp_func() at link time with:
cl6x --abi=elfabi ... -z --dynamic=exe --export=exp_func ...

In general, to build a dynamic executable, you must specify --dynamic=exe or --dynamic on the linker
command line or in a linker command file. Consider the build of the dl6x.6x file described in the
Dynamic Loader wiki article at http://processors.wiki.ti.com/index.php/C6000_EABI:Dynamic_Loader as
an example of how to build a dynamic executable or base image:
cl6x --abi=elfabi ... -z *.obj ... --dynamic --export=printf ...

In this example, the --dynamic option indicates that the result of the link is going to be a dynamic
executable. The --export=printf indicates that the printf() run-time-support function is exported by the
dynamic executable and, if imported by a dynamic library, can be called at run time by the functions
defined in the dynamic library.

7.12.5 Building a Dynamic Library

A dynamic library is a shared object that contains dynamic information in the form of a dynamic segment.
It is relocatable and can import symbols from other ELF dynamic objects that it links against and it can
also export symbols that it defines itself.

7.12.5.1 Importing/Exporting Symbols

Importing and exporting of symbols can be accomplished in two ways, similarly to how it can be done in
dynamic executables:

• Recommended: Declare exported and/or imported symbols explicitly in the source code of the
dynamic library using __declspec(dllexport) for exported symbols and __declspec(dllimport) for
imported symbols.

For example, if you want to export a function, red_fish(), and import another function, blue_fish(), you
could specify this in a source file as follows:
__declspec(dllexport) long red_fish();
__declspec(dllimport) int blue_fish();

• You can also specify symbols to be imported or exported on the linker command line (or in a linker
command file) using --import=symbol or "--export=symbol.

So at link time, you might say:
cl6x --abi=elfabi ... -z --dynamic=lib --export=red_fish --import=blue_fish

blue.dll -o red.dll

This informs the linker that the definition of red_fish() will be in the red.dll dynamic library and that we
can find and use the definition of blue_fish() in blue.dll.

In general, to build a dynamic library, you must specify --dynamic=lib on the linker command line or in a
linker command file. In addition, if any symbols are imported from other dynamic objects, then those
dynamic objects must be specified on the linker command line when the dynamic library is built. This is
sometimes referred to as static binding.

255SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_EABI:Dynamic_Loader
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Dynamic Linking with the C6000 Code Generation Tools www.ti.com

7.12.5.2 A Simple Example - hello.dll

This section describes a simple walk-through of the process used to build, load, and run a function that is
defined in a dynamic library.

• First compile this simple "Hello World" source:
hello.c:

#include <stdio.h>
__declspec(dllexport) int start();
int start()
{

printf("Hello World\n");
return 0;

}

• Then build a dynamic library called hello.dll:
cl6x -mv6400+ --abi=elfabi hello.c -z --import=printf --dynamic=lib -o hello.dll

dl6x.6x -e start

• Now, load the dynamic loader using a loader that supports C6000 ELF executable object files. Then
start the dynamic loader running. When using the reference implementation of the dynamic loader
(RIDL), you will see the RIDL prompt come up and then you need to issue the following commands:
RIDL> base_image dl6x.6x
RIDL> load hello.dll
RIDL> execute

You should see the "Hello World" message displayed and then control will return to the RIDL prompt.
To terminate the dynamic loader you can enter the exit command from the RIDL prompt.

For more details, see the Dynamic Loader wiki site
(http://processors.wiki.ti.com/index.php/C6000_Dynamic_Loader))

7.12.5.3 Summary of Compiler and Linker Options

This is a brief summary of the compiler and linker options that are related to support for the Dynamic
Linking Model in the C6000 CGT. For more details, see the C6000 EABI wiki article
(http://processors.wiki.ti.com/index.php/EABI_Support_in_C6000_Compiler).

Table 7-12. Compiler Options For Dynamic Linking

Option Description

--abi=eabi Specifies that EABI run-time model is to be used.

--dsbt Generates addressing via Dynamic Segment Base Table

--export_all_cpp_vtbl Exports C++ virtual tables by default

Specifies that all global symbol references that are not defined in a module are imported. Default--import_undef[=off|on] is on.

Specifies that all compiler generated calls to run-time-support functions are treated as calls to--import_helper_functions imported functions. See Section 7.12.6.

--inline_plt[=off|on] Inlines the import function call stub. Default is on.

--linux Generates code for Linux.

--pic[=off|on] Generates position independent addressing for a shared object. Default is near.

--visibility={hidden| Specifies a default visibility to be assumed for global symbols. See Section 7.12.6.default|protected}

Generates 32-bit wchar_t type when --abi=eabi is specified. By default the compiler generates–wchar_t 16-bit wchar_t.

256 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/C6000_Dynamic_Loader)
http://processors.wiki.ti.com/index.php/EABI_Support_in_C6000_Compiler
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Dynamic Linking with the C6000 Code Generation Tools

Table 7-13. Linker Options For Dynamic Linking

Option Description

Requests a specific Data Segment Base Table (DSBT) index to be associated with the current output
--dsbt_index=int file. If the DSBT model is being used, and you do not request a specific DSBT index for the output file,

then a DSBT index is assigned to the module at load time.

Specifies the size of the Data Segment Base Table (DSBT) for the current output file, in words. If the--dsbt_size=int DSBT model is being used, this option can be used to override the default DSBT size (8 words).

--dynamic[=exe] Specifies that the result of a link will be a dynamic executable. See Section 7.12.4.1.

--dynamic=lib Specifies that the result of a link will be a dynamic library. See Section 7.12.5.1.

--export=symbol Specifies that symbol is exported by the ELF object that is generated for this link.

--fini=symbol Specifies the symbol name of the termination code for the output file currently being linked.

--import=symbol Specifies that symbol is imported by the ELF object that is generated for this link.

--init=symbol Specifies the symbol name of the initialization code for the output file currently being linked.

--rpath=dir Adds a directory to the beginning of the dynamic library search path.

--runpath=dir Adds a directory to the end of the dynamic library search path.

--shared Generates a dynamically shared object.

Specifies shared object name to be used to identify this ELF object to the any downstream ELF object--soname=string consumers.

--sysv Generates SysV ELF output file.

7.12.6 Symbol Import/Export

In a dynamic linking system you can build dynamic modules that are loaded and relocated by a dynamic
loader at run time. The dynamic loader can also perform dynamic symbol resolution: resolve references
from dynamic modules with the definitions from other dynamic objects.

Only symbols explicitly imported or exported have dynamic linkage and participate in dynamic linking.
Normal global symbols don't participate in dynamic symbol resolution. A symbol is exported if it is visible
from a module during dynamic symbol resolution. A dynamic object is a dynamic library or a dynamic
executable. Such a dynamic object imports a symbol when its symbol references are resolved by
definitions from another dynamic object. The dynamic object that has the definition and makes it visible is
said to export the symbol.

7.12.6.1 ELF Symbols

ELF symbols have two attributes that contribute to static and dynamic symbol binding:

• Symbol Binding - symbol’s scope with respect to other files

• Symbol Visibility - symbol’s scope with respect to other run-time components (dynamic executable or
dynamic libraries)

A more detailed discussion of the symbol binding and visibility characteristics can be found in the ELF
Specification (Tool Interface Standard).

7.12.6.1.1 Symbol Binding Attribute Values
• STB_LOCAL

– Indicates that a symbol is not visible outside the module where it is defined.

– Any local references to the symbol will be resolved by the definition in the current module.

• STB_GLOBAL
– Indicates that a symbol is visible to all files being combined during the link step

– Any references to a global symbol that are left unresolved will result in a link-time error

• STB_WEAK
– Indicates that a symbol is visible to all files being combined during a link step.

– Global symbol definition takes precedence over corresponding weak symbol def.

257SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Dynamic Linking with the C6000 Code Generation Tools www.ti.com

7.12.6.1.2 ELF Symbol Visibility

GLOBAL/WEAK symbols can have any of the following visibility attributes:

• STV_DEFAULT
– Symbol definition is visible outside the defining component.

– Symbol definition can be preempted.

– Symbol references can be resolved by definition outside the referenced component.

• STV_PROTECTED
– Symbol definition is visible outside the defining component.

– Symbol definition cannot be preempted.

– Symbol reference must be resolved by a definition in the same component.

• STV_HIDDEN
– Symbol definition is not visible outside its own component.

– Symbol reference must be resolved by a definition in the same component.

7.12.6.2 Controlling Import/Export of Symbols

Symbols can be imported/exported by using:

• Source Code Annotations

• ELF Linkage Macros

• Compiler Options

• Linker Options

7.12.6.2.1 Source Code Annotations (Recommended)

A global symbol can be imported or exported by adding a __declspec() symbol annotation to the source
file.

• Export Using __declspec(dllexport)
__declspec(dllexport) int foo() { }

__declspec(dllexport) can be applied to both symbol declarations and symbol definitions.

• Import Using __declspec(dllimport)
__declspec(dllimport) int bar();

__declspec(dllimport) can be applied to a symbol declaration.

The compiler generates a warning if __declspec(dllimport) is applied to a symbol definition.

• Typically an API is exported by a module and is imported by another module. __declspec() can be
added to the API header file

• The linker uses the most restrictive visibility for symbols. For example, consider if the following were
true:

– foo() is declared with __declspec(dllimport) in a.c

– foo() is declared plain (no __declspec()) in b.c

– a.c and b.c are compiled into ab.dll

Then, the symbol, foo, is not imported in ab.dll and the linker reports an error indicating that the
reference to foo() is unresolved.

• Some of the benefits of using the __declspec() approach include:

– It enables the compiler to generate more optimal code.

– The optimizer does not optimize out exported symbols.

– The source code becomes a self-documenting in specifying the API for a given module, making it
easier to read and maintain.

– It can be used in the Dynamic Linking Model

258 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Dynamic Linking with the C6000 Code Generation Tools

7.12.6.2.2 Import/Export Using ELF Linkage Macros (elf_linkage.h)

The C6000 compiler provides a header file, elf_linkage.h, in the include sub-directory of the installed
toolset. The elf_linkage.h file defines several macros that can be used to control symbol visibility:

• TI_IMPORT symbol declaration

This macro imports the declared symbol. The TI_IMPORT macro cannot be applied to symbol
definitions.

TI_IMPORT int foo(void);
extern TI_IMPORT long global_variable;

• TI_EXPORT symbol definition|symbol declaration

This macro exports the symbol that is being declared or defined. The source module that makes use of
this macro must contain a definition of the symbol.

TI_EXPORT int foo(void);
TI_EXPORT long global_variable;

• TI_PATCHABLE symbol definition

This macro makes the definition of the symbol visible outside of the source module that uses it. Other
modules can import the defined symbol. Also, a reference to the symbol can be patched (or
re-directed) to a different definition of the symbol if needed. The compiler will generate an indirect call
to a function that has been marked as patchable. This technique is also sometimes called symbol
preemption.

TI_PATCHABLE int foo(void);
TI_PATCHABLE long global_variable;

• TI_DEFAULT symbol definition|symbol declaration

This macro specifies that the symbol in question can be either imported or exported. The definition of
the symbol is visible outside the module. Other modules can import the symbol definition. Any
references to the symbol can also be patched.

• TI_PROTECTED symbol definition|symbol declaration

This macro specifies that the symbol in question is visible outside of the module. Other modules can
import the symbol definition. However, a reference to the symbol can never be patched (symbol is
non-preemptable).

• TI_HIDDEN symbol definition|symbol declaration

The definition of the symbol is not visible outside the module that defines it.

7.12.6.2.3 Import/Export Using Compiler Options

The following compiler options can be used to control the symbol visibility of global symbols. The symbols
using source code annotations to control the visibility are not effected by these compiler options.

• --visibility=default visibility

The --visibility option specifies the default visibility for global symbols. This option does not affect the
visibility of symbols that use the __declspec() or TI_xxx macros to specify a visibility in the source
code. The default visibility is one of the following:

– hidden - Global symbols are not imported or exported. This is the default compiler behavior.

– default - All global symbols are imported, exported, and patchable.

– protected - All global symbols are exported.

• --import_undef
The --import_undef option makes all of the global symbol references imported. This option can be
combined with the --visibility option. For example, the following option combination makes all
definitions exported and all references imported:
--import_undef --visibility=protected

The --import_undef option takes precedence over the --visibility option.

259SPRU186V–July 2011 Linker Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Dynamic Linking with the C6000 Code Generation Tools www.ti.com

• --import_helper_functions
The compiler generates calls to functions that are defined in the run-time-support library. For example,
to perform unsigned long division in user code, the compiler generates a call to __c6xabi_divul. Since
there is no declaration and you do not call these functions directly, the __declspec() annotation cannot
be used. This prevents you from importing such functions from the run-time-support library that is built
as a dynamic library. To address this issue, the compiler supports the --import_helper_functions option.
When specified on the compiler command line, for each run-time-support function that is called by the
compiler, that function symbol will be imported.

7.12.6.2.4 Import/Export Using Linker Options

To import or export a symbol when the source code can not be updated with a __declspec() annotation,
the following linker options can be used:

• --import=symbol

This option adds symbol to the dynamic symbol table as an imported reference. At link-time, the static
linker searches through any object libraries that are included in the link to make sure that a definition of
symbol is available.

If a definition of symbol is included in the current link, then the --import option is ignored with a
warning.

• --export=symbol

This option adds symbolto the dynamic symbol table as an exported definition. At link-time, if the are
any objects that contain an unresolved external reference to symbol when the object that exports
symbol is encountered, then the object that contains the exported definition is included in the link.

If the --export=symbol option is used on the compile of an object that does not have a definition of
symbol in it, then the compiler generates an error.

The --import and --export Options

NOTE: The --import and --export options cannot be used when building a Linux executable or DSO.

260 Linker Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 8
SPRU186V–July 2011

Absolute Lister Description

The TMS320C6000 absolute lister is a debugging tool that accepts linked object files as input and creates
.abs files as output. These .abs files can be assembled to produce a listing that shows the absolute
addresses of object code. Manually, this could be a tedious process requiring many operations; however,
the absolute lister utility performs these operations automatically.

Absolute Listing Is Not Supported for C6400+, C6740, and C6600

NOTE: The absolute listing capability is not supported for C6400+, C6740, and C6600. You can
use the disassembler (dis6x) or the --map_file linker option instead.

Topic ... Page

8.1 Producing an Absolute Listing .. 262
8.2 Invoking the Absolute Lister ... 263
8.3 Absolute Lister Example ... 264

261SPRU186V–July 2011 Absolute Lister Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

First, assemble a source file.

Link the resulting object file.

Invoke the absolute lister; use the linked
object file as input. This creates a file with
an .abs extension.

Finally, assemble the .abs file; you must
invoke the assembler with the compiler
--absolute_listing option.

This produces a listing file that contains
absolute addresses.

Step 1:

Step 2:

Step 3:

Step 4:

Assembler
source file

Assembler

Object
file

Linker

Linked object
file

Absolute
lister

.abs
file

Assembler

Absolute
listing

Producing an Absolute Listing www.ti.com

8.1 Producing an Absolute Listing

Figure 8-1 illustrates the steps required to produce an absolute listing.

Figure 8-1. Absolute Lister Development Flow

262 Absolute Lister Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Invoking the Absolute Lister

8.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

abs6x [-options] input file

abs6x is the command that invokes the absolute lister.
options identifies the absolute lister options that you want to use. Options are not case sensitive

and can appear anywhere on the command line following the command. Precede each
option with a hyphen (-). The absolute lister options are as follows:
-e enables you to change the default naming conventions for filename extensions on

assembly files, C source files, and C header files. The valid options are:

• ea [.]asmext for assembly files (default is .asm)

• ec [.]cext for C source files (default is .c)

• eh [.]hext for C header files (default is .h)

• ep [.]pext for CPP source files (default is cpp)
The . in the extensions and the space between the option and the extension are
optional.

-q (quiet) suppresses the banner and all progress information.
input file names the linked object file. If you do not supply an extension, the absolute lister

assumes that the input file has the default extension .out. If you do not supply an input
filename when you invoke the absolute lister, the absolute lister prompts you for one.

The absolute lister produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

Assemble these files with the --absolute_listing assembler option as follows to create the absolute listing:

cl6x --absolute_listing filename .abs

The -e options affect both the interpretation of filenames on the command line and the names of the
output files. They should always precede any filename on the command line.

The -e options are useful when the linked object file was created from C files compiled with the debugging
option (--symdebug:dwarf compiler option). When the debugging option is set, the resulting linked object
file contains the name of the source files used to build it. In this case, the absolute lister does not generate
a corresponding .abs file for the C header files. Also, the .abs file corresponding to a C source file uses
the assembly file generated from the C source file rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with the debugging option set; the debugging
option generates the assembly file hello.s. The hello.csr file includes hello.hsr. Assuming the executable
file created is called hello.out, the following command generates the proper .abs file:
abs6x -ea s -ec csr -eh hsr hello.out

An .abs file is not created for hello.hsr (the header file), and hello.abs includes the assembly file hello.s,
not the C source file hello.csr.

263SPRU186V–July 2011 Absolute Lister Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Absolute Lister Example www.ti.com

8.3 Absolute Lister Example

This example uses three source files. The files module1.asm and module2.asm both include the file
globals.def.

module1.asm
.text
.align 4
.bss array, 100
.bss dflag, 4
.copy globals.def

MVKL offset, A0
MVKH offset, A0
LDW *+b14(dflag), A2
nop 4

module2.asm
.bss offset,2
.copy globals.def

mvkl offset,a0
mvkh offset,a0
mvkl array,a3
mvkh array,a3

globals.def
.global dflag
.global array
.global offset

The following steps create absolute listings for the files module1.asm and module2.asm:

Step 1: First, assemble module1.asm and module2.asm:
cl6x module1
cl6x module2

This creates two object files called module1.obj and module2.obj.
Step 2: Next, link module1.obj and module2.obj using the following linker command file, called

bttest.cmd:

--output_file=bttest.out
--map_file=bttest.map
module1.obj
module2.obj
MEMORY
{

PMEM: origin=00000000h length=00010000h
DMEM: origin=80000000h length=00010000h

}
SECTIONS
{

.data: >DMEM

.text: >PMEM

.bss: >DMEM
}

Invoke the linker:
cl6x --run_linker bttest.cmd

This command creates an executable object file called bttest.out; use this new file as input
for the absolute lister.

264 Absolute Lister Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Absolute Lister Example

Step 3: Now, invoke the absolute lister:
abs6x bttest.out

This command creates two files called module1.abs and module2.abs:

module1.abs:

.nolist
array .setsym 080000000h
dflag .setsym 080000064h
offset .setsym 080000068h
.data .setsym 080000000h
___data__ .setsym 080000000h
edata .setsym 080000000h
___edata__ .setsym 080000000h
.text .setsym 000000000h
___text__ .setsym 000000000h
etext .setsym 000000040h
___etext__ .setsym 000000040h
.bss .setsym 080000000h
___bss__ .setsym 080000000h
end .setsym 08000006ah
___end__ .setsym 08000006ah
$bss .setsym 080000000h

.setsect ".text",000000020h

.setsect ".data",080000000h

.setsect ".bss",080000000h

.list

.text

.copy "module1.asm"

module2.abs:

.nolist
array .setsym 080000000h
dflag .setsym 080000064h
offset .setsym 080000068h
.data .setsym 080000000h
___data__ .setsym 080000000h
edata .setsym 080000000h
___edata__ .setsym 080000000h
.text .setsym 000000000h
___text__ .setsym 000000000h
etext .setsym 000000040h
___etext__ .setsym 000000040h
.bss .setsym 080000000h
___bss__ .setsym 080000000h
end .setsym 08000006ah
___end__ .setsym 08000006ah
$bss .setsym 080000000h

.setsect ".text",000000000h

.setsect ".data",080000000h

.setsect ".bss",080000068h

.list

.text

.copy "module2.asm"

265SPRU186V–July 2011 Absolute Lister Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Absolute Lister Example www.ti.com

These files contain the following information that the assembler needs for Step 4:

• They contain .setsym directives, which equate values to global symbols. Both files contain
global equates for the symbol dflag. The symbol dflag was defined in the file globals.def,
which was included in module1.asm and module2.asm.

• They contain .setsect directives, which define the absolute addresses for sections.
• They contain .copy directives, which defines the assembly language source file to include.
The .setsym and .setsect directives are useful only for creating absolute listings, not normal
assembly.

Step 4: Finally, assemble the .abs files created by the absolute lister (remember that you must use
the --absolute_listing option when you invoke the assembler):
cl6x --absolute_listing module1.abs
cl6x --absolute_listing module2.abs

This command sequence creates two listing files called module1.lst and module2.lst; no
object code is produced. These listing files are similar to normal listing files; however, the
addresses shown are absolute addresses.
The absolute listing files created are module1.lst (see Example 8-1) and module2.lst (see
Example 8-2).

Example 8-1. module1.lst

module1.abs PAGE 1
22 00000020 .text
23 .copy "module1.asm"

A 1 00000020 .text
A 2 .align 4
A 3 80000000 .bss array, 100
A 4 80000064 .bss dflag, 4
A 5 .copy globals.def
B 1 .global dflag
B 2 .global array
B 3 .global offset
A 6
A 7 00000020 00003428! MVKL offset, A0
A 8 00000024 00400068! MVKH offset, A0
A 9 00000028 0100196C- LDW *+b14(dflag), A2
A 10 0000002c 00006000 nop 4
No Errors, No Warnings

Example 8-2. module2.lst

module2.abs PAGE 1
22 00000000 .text
23 .copy "module2.asm"

A 1 80000068 .bss offset,2
A 2 .copy globals.def
B 1 .global dflag
B 2 .global array
B 3 .global offset
A 3
A 4 00000000 00003428- mvkl offset,a0
A 5 00000004 00400068- mvkh offset,a0
A 6 00000008 01800028! mvkl array,a3
A 7 0000000c 01C00068! mvkh array,a3
No Errors, No Warnings

266 Absolute Lister Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 9
SPRU186V–July 2011

Cross-Reference Lister Description

The TMS320C6000 cross-reference lister is a debugging tool. This utility accepts linked object files as
input and produces a cross-reference listing as output. This listing shows symbols, their definitions, and
their references in the linked source files.

Cross-Reference Listing Not Supported for C6400+, C6740, and C6600

NOTE: The cross-reference listing capability is not supported for C6400+, C6740, and C6600. You
can use the disassembler, the -m linker option or the object file utility (ofd6x) to obtain similar
information.

Topic ... Page

9.1 Producing a Cross-Reference Listing ... 268
9.2 Invoking the Cross-Reference Lister .. 269
9.3 Cross-Reference Listing Example .. 270

267SPRU186V–July 2011 Cross-Reference Lister Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

First, invoke the assembler with the compiler
--cross_reference option. This produces
a cross-reference table in the listing file and
adds to the object file cross-reference infor-
mation. By default, only global symbols are
cross-referenced. If you use the compiler
--output_all_syms option, local symbols are
cross-referenced as well.

Link the object file (.obj) to obtain an
executable object file (.out).

Invoke the cross-reference lister. The
following section provides the command
syntax for invoking the cross-reference lister
utility.

Step 1:

Step 2:

Step 3:

Assembler
source file

Assembler

Object
file

Linker

Linked object
file

Cross-reference
lister

Cross-reference
listing

Producing a Cross-Reference Listing www.ti.com

9.1 Producing a Cross-Reference Listing

Figure 9-1 illustrates the steps required to produce a cross-reference listing.

Figure 9-1. The Cross-Reference Lister Development Flow

268 Cross-Reference Lister Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Invoking the Cross-Reference Lister

9.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct options and then linked into
an executable file. Assemble the assembly language files with the --cross_reference option. This option
creates a cross-reference listing and adds cross-reference information to the object file. By default, the
assembler cross-references only global symbols, but if the assembler is invoked with the
--output_all_syms option, local symbols are also added. Link the object files to obtain an executable file.

To invoke the cross-reference lister, enter the following:

xref6x [options] [input filename [output filename]]

is the command that invokes the cross-reference utility.xref6x
options identifies the cross-reference lister options you want to use. Options are not case

sensitive and can appear anywhere on the command line following the command.
-l (lowercase L) specifies the number of lines per page for the output file. The format

of the -l option is -lnum, where num is a decimal constant. For example, -l30 sets
the number of lines per page in the output file to 30. The space between the
option and the decimal constant is optional. The default is 60 lines per page.

-q suppresses the banner and all progress information (run quiet).
input filename is a linked object file. If you omit the input filename, the utility prompts for a filename.
output filename is the name of the cross-reference listing file. If you omit the output filename, the default

filename is the input filename with an .xrf extension.

269SPRU186V–July 2011 Cross-Reference Lister Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Cross-Reference Listing Example www.ti.com

9.3 Cross-Reference Listing Example

Example 9-1 is an example of cross-reference listing.

Example 9-1. Cross-Reference Listing

==
Symbol: _SETUP
Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
demo.asm EDEF '00000018 00000018 18 13 20
==
Symbol: _fill_tab
Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
ctrl.asm EDEF '00000000 00000040 10 5
==
Symbol: _x42
Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
demo.asm EDEF '00000000 00000000 7 4 18
==
Symbol: gvar
Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
________ ____ ________ ________ ______ _______ _______ _______
tables.asm EDEF "00000000 08000000 11 10
==

The terms defined below appear in the preceding cross-reference listing:

Symbol Name of the symbol listed
Filename Name of the file where the symbol appears
RTYP The symbol's reference type in this file. The possible reference types are:

STAT The symbol is defined in this file and is not declared as global.
EDEF The symbol is defined in this file and is declared as global.
EREF The symbol is not defined in this file but is referenced as global.
UNDF The symbol is not defined in this file and is not declared as global.

AsmVal This hexadecimal number is the value assigned to the symbol at assembly time. A
value may also be preceded by a character that describes the symbol's attributes.
Table 9-1 lists these characters and names.

LnkVal This hexadecimal number is the value assigned to the symbol after linking.
DefLn The statement number where the symbol is defined.
RefLn The line number where the symbol is referenced. If the line number is followed by an

asterisk (*), then that reference can modify the contents of the object. A blank in this
column indicates that the symbol was never used.

Table 9-1. Symbol Attributes in Cross-Reference
Listing

Character Meaning

' Symbol defined in a .text section

" Symbol defined in a .data section

+ Symbol defined in a .sect section

- Symbol defined in a .bss or .usect section

270 Cross-Reference Lister Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 10
SPRU186V–July 2011

Object File Utilities

This chapter describes how to invoke the following utilities:

• The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both text and XML formats.

• The disassembler accepts object files and executable files as input and produces an assembly listing
as output. This listing shows assembly instructions, their opcodes, and the section program counter
values.

• The name utility prints a list of names defined and referenced in an object file, executable files, and/or
archive libraries.

• The strip utility removes symbol table and debugging information from object and executable files.

Topic ... Page

10.1 Invoking the Object File Display Utility ... 272
10.2 Invoking the Disassembler .. 273
10.3 Invoking the Name Utility .. 273
10.4 Invoking the Strip Utility ... 274

271SPRU186V–July 2011 Object File Utilities
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Invoking the Object File Display Utility www.ti.com

10.1 Invoking the Object File Display Utility

The object file display utility, ofd6x, prints the contents of object files (.obj), executable files (.out), and/or
archive libraries (.lib) in both text and XML formats. Hidden symbols are listed as no name, while localized
symbols are listed like any other local symbol.

To invoke the object file display utility, enter the following:

ofd6x [options] input filename [input filename]

ofd6x is the command that invokes the object file display utility.
input filename names the object file (.obj), executable file (.out), or archive library (.lib) source file.

The filename must contain an extension.
options identify the object file display utility options that you want to use. Options are not case

sensitive and can appear anywhere on the command line following the command.
Precede each option with a hyphen.
--dwarf_display=attributes controls the DWARF display filter settings by specifying a

comma-delimited list of attributes. When prefixed with no,
an attribute is disabled instead of enabled.
Examples: --dwarf_display=nodabbrev,nodline

--dwarf_display=all,nodabbrev
--dwarf_display=none,dinfo,types

The ordering of attributes is important (see --obj_display).
The list of available display attributes can be obtained by
invoking ofd6x --dwarf_display=help.

-g appends DWARF debug information to program output.
-h displays help
-o=filename sends program output to filename rather than to the

screen.
--obj_display attributes controls the object file display filter settings by specifying

a comma-delimited list of attributes. When prefixed with
no, an attribute is disabled instead of enabled.
Examples: --obj_display=rawdata,nostrings

--obj_display=all,norawdata
--obj_display=none,header

The ordering of attributes is important. For instance, in
"--obj_display=none,header", ofd6x disables all output,
then re-enables file header information. If the attributes
are specified in the reverse order, (header,none), the file
header is enabled, the all output is disabled, including the
file header. Thus, nothing is printed to the screen for the
given files. The list of available display attributes can be
obtained by invoking ofd6x --obj_display=help.

-v prints verbose text output.
-x displays output in XML format.
--xml_indent=num sets the number of spaces to indent nested XML tags.

If an archive file is given as input to the object file display utility, each object file member of the archive is
processed as if it was passed on the command line. The object file members are processed in the order in
which they appear in the archive file.

If the object file display utility is invoked without any options, it displays information about the contents of
the input files on the console screen.

272 Object File Utilities SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Invoking the Disassembler

Object File Display Format

NOTE: The object file display utility produces data in a text format by default. This data is not
intended to be used as input to programs for further processing of the information. XML
format should be used for mechanical processing.

10.2 Invoking the Disassembler

The disassembler, dis6x, examines the output of the assembler or linker. This utility accepts an object file
or executable file as input and writes the disassembled object code to standard output or a specified file.

To invoke the disassembler, enter the following:

dis6x [options] input filename[.] [output filename]

dis6x is the command that invokes the disassembler.
options identifies the name utility options you want to use. Options are not case sensitive and

can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:
-a disables the printing of branch destination addresses along with labels.
-b displays data as bytes instead of words.
-c dumps the object file information.
-d disables display of data sections.
-h shows the current help screen.
-i disassembles .data sections as instructions.
-l disassembles data sections as text.
-n suppresses FP header information for Joule Compact FPs.
-o## disassembles single word ## or 0x## then exits.
-q (quiet mode) suppresses the banner and all progress information.
-qq (super quiet mode) suppresses all headers.
-s suppresses printing of address and data words.
-t suppresses the display of text sections in the listing.
-v displays family of the target.

input is the name of the input file. If the optional extension is not specified, the file is
filename[.ext] searched for in this order:

1. infile

2. infile.out, an executable file

3. infile.obj, an object file
output filename is the name of the optional output file to which the disassembly will be written. If an

output filename is not specified, the disassembly is written to standard output.

10.3 Invoking the Name Utility

The name utility, nm6x, prints the list of names defined and referenced in an object file, executable file, or
archive library. It also prints the symbol value and an indication of the kind of symbol. Hidden symbols are
listed as "".

To invoke the name utility, enter the following:

nm6x [-options] [input filenames]

273SPRU186V–July 2011 Object File Utilities
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Invoking the Strip Utility www.ti.com

nm6x is the command that invokes the name utility.
input filename is an object file (.obj), executable file (.out), or archive library (.lib).
options identifies the name utility options you want to use. Options are not case sensitive and

can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:
-a prints all symbols.
-c also prints C_NULL symbols for a COFF object module.
-d also prints debug symbols for a COFF object module.
-f prepends file name to each symbol.
-g prints only global symbols.
-h shows the current help screen.
-l produces a detailed listing of the symbol information.
-n sorts symbols numerically rather than alphabetically.
-o file outputs to the given file.
-p causes the name utility to not sort any symbols.
-q (quiet mode) suppresses the banner and all progress information.
-r sorts symbols in reverse order.
-t also prints tag information symbols for a COFF object module.
-u only prints undefined symbols.

10.4 Invoking the Strip Utility

The strip utility, strip6x, removes symbol table and debugging information from object and executable files.

To invoke the strip utility, enter the following:

strip6x [-p] input filename [input filename]

strip6x is the command that invokes the strip utility.
input filename is an object file (.obj) or an executable file (.out).
options identifies the strip utility options you want to use. Options are not case sensitive and can

appear anywhere on the command line following the invocation. Precede each option
with a hyphen (-). The strip utility option is as follows:
-o filename writes the stripped output to filename.
-p removes all information not required for execution. This option causes more

information to be removed than the default behavior, but the object file is
left in a state that cannot be linked. This option should be used only with
static executable or dynamic object module files.

When the strip utility is invoked without the -o option, the input object files are replaced with the stripped
version.

274 Object File Utilities SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 11
SPRU186V–July 2011

Hex Conversion Utility Description

The TMS320C6000 assembler and linker create object files which are in binary formats that encourage
modular programming and provide powerful and flexible methods for managing code segments and target
system memory.

Most EPROM programmers do not accept object files as input. The hex conversion utility converts an
object file into one of several standard ASCII hexadecimal formats, suitable for loading into an EPROM
programmer. The utility is also useful in other applications requiring hexadecimal conversion of an object
file (for example, when using debuggers and loaders).

The hex conversion utility can produce these output file formats:

• ASCII-Hex, supporting 32-bit addresses

• Extended Tektronix (Tektronix)

• Intel MCS-86 (Intel)

• Motorola Exorciser (Motorola-S), supporting 16-bit addresses

• Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

• Texas Instruments TI-TXT format, supporting 16-bit addresses

Topic ... Page

11.1 The Hex Conversion Utility's Role in the Software Development Flow 276
11.2 Invoking the Hex Conversion Utility ... 277
11.3 Understanding Memory Widths ... 280
11.4 The ROMS Directive ... 284
11.5 The SECTIONS Directive ... 288
11.6 The Load Image Format (--load_image Option) .. 289
11.7 Excluding a Specified Section ... 289
11.8 Assigning Output Filenames ... 290
11.9 Image Mode and the --fill Option .. 291
11.10 Building a Table for an On-Chip Boot Loader .. 292
11.11 Controlling the ROM Device Address .. 297
11.12 Control Hex Conversion Utility Diagnostics ... 298
11.13 Description of the Object Formats .. 299

275SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

C/C++
source

files

C/C++
compiler

Assembler
source

Assembler

Executable
object file

Debugging
toolsLibrary-build

process

Run-time-
support
library

Archiver

Archiver

Macro
library

Absolute lister

Hex-conversion
utility

Cross-reference
lister

Object file
utilities

C6000

Linker

Linear
assembly

Assembly
optimizer

Assembly
optimized

file

Macro
source

files

Object
files

EPROM
programmer

Library of
object
files

The Hex Conversion Utility's Role in the Software Development Flow www.ti.com

11.1 The Hex Conversion Utility's Role in the Software Development Flow

Figure 11-1 highlights the role of the hex conversion utility in the software development process.

Figure 11-1. The Hex Conversion Utility in the TMS320C6000 Software Development Flow

276 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Invoking the Hex Conversion Utility

11.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:

• Specify the options and filenames on the command line. The following example converts the file
firmware.out into TI-Tagged format, producing two output files, firm.lsb and firm.msb.
hex6x -t firmware -o firm.lsb -o firm.msb

hex6x --ti_tagged firmware --outfile=firm.lsb --outfile=firm.msb

• Specify the options and filenames in a command file. You can create a file that stores command
line options and filenames for invoking the hex conversion utility. The following example invokes the
utility using a command file called hexutil.cmd:
hex6x hexutil.cmd

In addition to regular command line information, you can use the hex conversion utility ROMS and
SECTIONS directives in a command file.

11.2.1 Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

hex6x [options] filename

hex6x is the command that invokes the hex conversion utility.
options supplies additional information that controls the hex conversion process. You can use

options on the command line or in a command file. Table 11-1 lists the basic options.

• All options are preceded by a hyphen and are not case sensitive.

• Several options have an additional parameter that must be separated from the option
by at least one space.

• Options with multi-character names must be spelled exactly as shown in this
document; no abbreviations are allowed.

• Options are not affected by the order in which they are used. The exception to this rule
is the --quiet option, which must be used before any other options.

filename names an object file or a command file (for more information, see Section 11.2.2).

Table 11-1. Basic Hex Conversion Utility Options

Option Alias Description See

General Options

Number output locations by bytes rather than by target--byte -byte --addressing

Specify the entry point address or global symbol at which to--entry_point=addr -e Section 11.10.3.3begin execution after boot loading

--exclude={fname(sname) | If the filename (fname) is omitted, all sections matching-exclude Section 11.7sname} sname will be excluded.

--fill=value -fill Fill holes with value Section 11.9.2

Display the syntax for invoking the utility and list available
options. If the option is followed by another option or phrase,

--help -options, -h detailed information about that option or phrase is displayed. Section 11.2.2
For example, to see information about options associated with
generating a boot table, use --help boot.

--image -image Select image mode Section 11.9.1

--linkerfill -linkerfill Include linker fill sections in images --

--map=filename -map Generate a map file Section 11.4.2

--memwidth=value -memwidth Define the system memory word width (default 32 bits) Section 11.3.2

--olength=value -olength Specify maximum number of data items per line of output --

277SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Invoking the Hex Conversion Utility www.ti.com

Table 11-1. Basic Hex Conversion Utility Options (continued)

Option Alias Description See

--order={L|M} -order Specify data ordering (endianness) Section 11.3.4

--outfile=filename -o Specify an output filename Section 11.8

--quiet -q Run quietly (when used, it must appear before other options) Section 11.2.2

Specify the ROM device width (default depends on format--romwidth=value -romwidth Section 11.3.3used)

--zero -zero, -z Reset the address origin to 0 in image mode Section 11.9.3

Diagnostic Options

--diag_error=id Categorizes the diagnostic identified by id as an error Section 11.12

--diag_remark=id Categorizes the diagnostic identified by id as a remark Section 11.12

--diag_suppress=id Suppresses the diagnostic identified by id Section 11.12

--diag_warning=id Categorizes the diagnostic identified by id as a warning Section 11.12

--display_error_number Displays a diagnostic's identifiers along with its text Section 11.12

--issue_remarks Issues remarks (nonserious warnings) Section 11.12

--no_warnings Suppresses warning diagnostics (errors are still issued) Section 11.12

Sets the error limit to count. The linker abandons linking after--set_error_limit=count Section 11.12this number of errors. (The default is 100.)

Boot Table Options

Convert all initialized sections into bootable form (use instead--boot -boot Section 11.10.3.1of a SECTIONS directive)

--bootorg=addr -bootorg Specify origin address of the boot loader table Section 11.10.3.1

Specify which section contains the boot routine and where it--bootsection=section -bootsection Section 11.10.3.1should be placed

Output Options

--ascii -a Select ASCII-Hex Section 11.13.1

--intel -i Select Intel Section 11.13.2

--motorola=1 -m1 Select Motorola-S1 Section 11.13.3

--motorola=2 -m2 Select Motorola-S2 Section 11.13.3

--motorola=3 -m3 Select Motorola-S3 (default -m option) Section 11.13.3

Select Tektronix (default format when no output option is--tektronix -x Section 11.13.4specified)

--ti_tagged -t Select TI-Tagged Section 11.13.5

--ti_txt Select TI-Txt Section 11.13.6

Load Image Options

--load_image Select load image Section 11.6

--section_name_prefix=string Specify the section name prefix for load image object files Section 11.6

278 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Invoking the Hex Conversion Utility

11.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with the same input files and
options. It is also useful if you want to use the ROMS and SECTIONS hex conversion utility directives to
customize the conversion process.

Command files are ASCII files that contain one or more of the following:

• Options and filenames. These are specified in a command file in exactly the same manner as on the
command line.

• ROMS directive. The ROMS directive defines the physical memory configuration of your system as a
list of address-range parameters. (See Section 11.4.)

• SECTIONS directive. The hex conversion utility SECTIONS directive specifies which sections from the
object file are selected. (See Section 11.5.)

• Comments. You can add comments to your command file by using the /* and */ delimiters. For
example:
/* This is a comment. */

To invoke the utility and use the options you defined in a command file, enter:

hex6x command_filename

You can also specify other options and files on the command line. For example, you could invoke the
utility by using both a command file and command line options:
hex6x firmware.cmd --map=firmware.mxp

The order in which these options and filenames appear is not important. The utility reads all input from the
command line and all information from the command file before starting the conversion process. However,
if you are using the -q option, it must appear as the first option on the command line or in a command file.

The --help option displays the syntax for invoking the compiler and lists available options. If the --help
option is followed by another option or phrase, detailed information about the option or phrase is
displayed. For example, to see information about options associated with generating a boot table use
--help boot.

The --quiet option suppresses the hex conversion utility's normal banner and progress information.

• Assume that a command file named firmware.cmd contains these lines:
firmware.out /* input file */
--ti_tagged /* TI-Tagged */
--outfile=firm.lsb /* output file */
--outfile=firm.msb /* output file */

You can invoke the hex conversion utility by entering:
hex6x firmware.cmd

• This example shows how to convert a file called appl.out into eight hex files in Intel format. Each output
file is one byte wide and 4K bytes long.
appl.out /* input file */
--intel /* Intel format */
--map=appl.mxp /* map file */

ROMS
{

ROW1: origin=0x00000000 len=0x4000 romwidth=8
files={ appl.u0 appl.u1 app1.u2 appl.u3 }

ROW2: origin=0x00004000 len=0x4000 romwidth=8
files={ app1.u4 appl.u5 appl.u6 appl.u7 }

}

SECTIONS
{ .text, .data, .cinit, .sect1, .vectors, .const:
}

279SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

The raw data in the object file
is grouped into words according

to the size specified by the
--memwidth option.

The memwidth-sized words are
broken up according to the size

specified by the --romwidth option
and are written to a file(s)

according to the specified format
(i.e., Intel, Tektronix, etc.).

Phase I

Phase II

Input file

Output file(s)

Raw data in object files is
represented in the target’s
addressable units. For the
C6000, this is 32 bits.

Understanding Memory Widths www.ti.com

11.3 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by allowing you to specify
memory and ROM widths. To use the hex conversion utility, you must understand how the utility treats
word widths. Three widths are important in the conversion process:

• Target width

• Memory width

• ROM width

The terms target word, memory word, and ROM word refer to a word of such a width.

Figure 11-2 illustrates the separate and distinct phases of the hex conversion utility's process flow.

Figure 11-2. Hex Conversion Utility Process Flow

11.3.1 Target Width

Target width is the unit size (in bits) of the target processor's word. The unit size corresponds to the data
bus size on the target processor. The width is fixed for each target and cannot be changed. The
TMS320C6000 targets have a width of 32 bits.

280 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

AABBCCDD

1 1 2 2 3 3 4 4

CCDD

A ABB

3 3 4 4

1 1 2 2

DD

CC

B B

AA

4 4

3 3

2 2

1 1

--memwidth=32 (default) --memwidth=16 --memwidth=8

Memory widths (variable)

AA BB CC DD

1 1 2 2 3 3 4 4

Object file data (assumed to be in little-endian format)

Source file

.word

.word

AABBCCDD0 h

1 1 2 2 3 3 4 40 h

Data after
phase I

of hex6x

www.ti.com Understanding Memory Widths

11.3.2 Specifying the Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the memory system is
physically the same width as the target processor width: a 32-bit processor has a 32-bit memory
architecture. However, some applications require target words to be broken into multiple, consecutive, and
narrower memory words.

By default, the hex conversion utility sets memory width to the target width (in this case, 32 bits).

You can change the memory width (except for TI-TXT format) by:

• Using the --memwidth option. This changes the memory width value for the entire file.

• Setting the memwidth parameter of the ROMS directive. This changes the memory width value for the
address range specified in the ROMS directive and overrides the --memwidth option for that range.
See Section 11.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 32 only when you need to break single target words
into consecutive, narrower memory words.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the memory width of the TI-TXT format. The TI-TXT hex format
supports an 8-bit memory width only.

Figure 11-3 demonstrates how the memory width is related to object file data.

Figure 11-3. Object File Data and Memory Widths

281SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

A A B B C C D D 1 1 2 2 3 3 4 4

--memwidth=32

31 0

Understanding Memory Widths www.ti.com

11.3.3 Partitioning Data Into Output Files

ROM width specifies the physical width (in bits) of each ROM device and corresponding output file
(usually one byte or eight bits). The ROM width determines how the hex conversion utility partitions the
data into output files. After the object file data is mapped to the memory words, the memory words are
broken into one or more output files. The number of output files is determined by the following formulas:

• If memory width ≥ ROM width:

number of files = memory width ÷ ROM width

• If memory width < ROM width:

number of files = 1

For example, for a memory width of 32, you could specify a ROM width value of 32 and get a single
output file containing 32-bit words. Or you can use a ROM width value of 16 to get two files, each
containing 16 bits of each word.

The default ROM width that the hex conversion utility uses depends on the output format:

• All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the default ROM width for these
formats is 8 bits.

• TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16 bits.

The TI-Tagged Format is 16 Bits Wide

NOTE: You cannot change the ROM width of the TI-Tagged format. The TI-Tagged format supports
a 16-bit ROM width only.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the ROM width of the TI-TXT format. The TI-TXT hex format supports
only an 8-bit ROM width.

You can change ROM width (except for TI-Tagged and TI-TXT formats) by:

• Using the --romwidth option. This option changes the ROM width value for the entire object file.

• Setting the romwidth parameter of the ROMS directive. This parameter changes the ROM width value
for a specific ROM address range and overrides the --romwidth option for that range. See
Section 11.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format (16 bits for TI-Tagged or
8 bits for all others), the utility simply writes multibyte fields into the file.

Figure 11-4 illustrates how the object file data, memory, and ROM widths are related to one another.

Memory width and ROM width are used only for grouping the object file data; they do not represent
values. Thus, the byte ordering of the object file data is maintained throughout the conversion process. To
refer to the partitions within a memory word, the bits of the memory word are always numbered from right
to left as follows:

282 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Data after
phase II
of hex6x

AABBCCDD

1 1 2 2 3 3 4 4

CCDD

A ABB

3 3 4 4

1 1 2 2

DD

CC

B B

AA

4 4

3 3

2 2

1 1

--memwidth=32 --memwidth=16 --memwidth=8

Memory widths (variable)

AA BB CC DD

1 1 2 2 3 3 4 4

Object file data (assumed to be in little-endian format)

Source file
.word

.word

AABBCCDD0 h

1 1 2 2 3 3 4 40 h

Data after
phase I

of hex6x

DD 4 4

Output files

--romwidth=8

--outfile=file.b0

CC 3 3--outfile=file.b1

BB 2 2--outfile=file.b2

AA 1 1--outfile=file.b3

--romwidth=16

--outfile=file.wrd CCDDAABB 3 3 4 4 1 1 2 2

--romwidth=8

--outfile=file.b0

--outfile=file.b1

--romwidth=8

--outfile=file.byt DDCCBBAA 4 4 3 3 2 2 1 1

DD BB 4 4 2 2

CC AA 3 3 1 1

www.ti.com Understanding Memory Widths

Figure 11-4. Data, Memory, and ROM Widths

283SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

The ROMS Directive www.ti.com

11.3.4 Specifying Word Order for Output Words

There are two ways to split a wide word into consecutive memory locations in the same hex conversion
utility output file:

• --order=M specifies big-endian ordering, in which the most significant part of the wide word occupies
the first of the consecutive locations.

• --order=L specifies little-endian ordering, in which the least significant part of the wide word occupies
the first of the consecutive locations.

By default, the utility uses little-endian format. Unless your boot loader program expects big-endian format,
avoid using --order=M.

When the -order Option Applies
NOTE:

• This option applies only when you use a memory width with a value of 32
(--memwidth32). Otherwise, the hex utility does not have access to the entire 32-bit
word and cannot perform the byte swapping necessary to change the endianness;
--order is ignored.

• This option does not affect the way memory words are split into output files. Think of the
files as a set: the set contains a least significant file and a most significant file, but there
is no ordering over the set. When you list filenames for a set of files, you always list the
least significant first, regardless of the --order option.

11.4 The ROMS Directive

The ROMS directive specifies the physical memory configuration of your system as a list of address-range
parameters.

Each address range produces one set of files containing the hex conversion utility output data that
corresponds to that address range. Each file can be used to program one single ROM device.

The ROMS directive is similar to the MEMORY directive of the TMS320C6000 linker: both define the
memory map of the target address space. Each line entry in the ROMS directive defines a specific
address range. The general syntax is:

ROMS
{

romname : [origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={ filename 1, filename 2, ...}]

romname : [origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={ filename 1, filename 2, ...}]

...
}

ROMS begins the directive definition.
romname identifies a memory range. The name of the memory range can be one to eight

characters in length. The name has no significance to the program; it simply identifies
the range, except when the output is for a load image in which case it denotes the
section name. (Duplicate memory range names are allowed.)

origin specifies the starting address of a memory range. It can be entered as origin, org, or o.
The associated value must be a decimal, octal, or hexadecimal constant. If you omit
the origin value, the origin defaults to 0. The following table summarizes the notation
you can use to specify a decimal, octal, or hexadecimal constant:

284 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com The ROMS Directive

Constant Notation Example

Hexadecimal 0x prefix or h suffix 0x77 or 077h

Octal 0 prefix 077

Decimal No prefix or suffix 77

length specifies the length of a memory range as the physical length of the ROM device. It
can be entered as length, len, or l. The value must be a decimal, octal, or hexadecimal
constant. If you omit the length value, it defaults to the length of the entire address
space.

romwidth specifies the physical ROM width of the range in bits (see Section 11.3.3). Any value
you specify here overrides the --romwidth option. The value must be a decimal, octal,
or hexadecimal constant that is a power of 2 greater than or equal to 8.

memwidth specifies the memory width of the range in bits (see Section 11.3.2). Any value you
specify here overrides the --memwidth option. The value must be a decimal, octal, or
hexadecimal constant that is a power of 2 greater than or equal to 8. When using the
memwidth parameter, you must also specify the paddr parameter for each section in
the SECTIONS directive. (See Section 11.5.)

fill specifies a fill value to use for the range. In image mode, the hex conversion utility
uses this value to fill any holes between sections in a range. A hole is an area between
the input sections that comprises an output section that contains no actual code or
data. The fill value must be a decimal, octal, or hexadecimal constant with a width
equal to the target width. Any value you specify here overrides the --fill option. When
using fill, you must also use the --image command line option. (See Section 11.9.2.)

files identifies the names of the output files that correspond to this range. Enclose the list of
names in curly braces and order them from least significant to most significant output
file, where the bits of the memory word are numbered from right to left. The number of
file names must equal the number of output files that the range generates. To calculate
the number of output files, see Section 11.3.3. The utility warns you if you list too many
or too few filenames.

Unless you are using the --image option, all of the parameters that define a range are optional; the
commas and equal signs are also optional. A range with no origin or length defines the entire address
space. In image mode, an origin and length are required for all ranges.

Ranges must not overlap and must be listed in order of ascending address.

11.4.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a single default range that includes the entire
address space. This is equivalent to a ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

• Program large amounts of data into fixed-size ROMs. When you specify memory ranges
corresponding to the length of your ROMs, the utility automatically breaks the output into blocks that fit
into the ROMs.

• Restrict output to certain segments. You can also use the ROMS directive to restrict the conversion
to a certain segment or segments of the target address space. The utility does not convert the data
that falls outside of the ranges defined by the ROMS directive. Sections can span range boundaries;
the utility splits them at the boundary into multiple ranges. If a section falls completely outside any of
the ranges you define, the utility does not convert that section and issues no messages or warnings.
Thus, you can exclude sections without listing them by name with the SECTIONS directive. However, if
a section falls partially in a range and partially in unconfigured memory, the utility issues a warning and
converts only the part within the range.

285SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

.text

.data

Width = 8 bits

0h

rom4000.b0

.text

.data

0h

rom4000.b1

len = 2000h (8K)

0x00004000
(org)

0x00004880

0x00005B80

0x00005FFF

Output files:
EPROM1

.data

.table

FFh

rom6000.b0 rom6000.b1

0x00006000

0x00006340

0x00006700

0x00007FFF

EPROM2

FFh
0x00007C80

.data

.table

00h

00h

.text

.data

.table

COFF file:
infile.out

0x00004000

0x0000487F

0x00005B80

0x0000633F

0x00006700

0x00007C7F

The ROMS Directive www.ti.com

• Use image mode. When you use the --image option, you must use a ROMS directive. Each range is
filled completely so that each output file in a range contains data for the whole range. Holes before,
between, or after sections are filled with the fill value from the ROMS directive, with the value specified
with the --fill option, or with the default value of 0.

11.4.2 An Example of the ROMS Directive

The ROMS directive in Example 11-1 shows how 16K bytes of 16-bit memory could be partitioned for two
8K-byte 8-bit EPROMs. Figure 11-5 illustrates the input and output files.

Example 11-1. A ROMS Directive Example

infile.out
--image
--memwidth 16

ROMS
{

EPROM1: org = 0x00004000, len = 0x2000, romwidth = 8
files = { rom4000.b0, rom4000.b1}

EPROM2: org = 0x00006000, len = 0x2000, romwidth = 8,
fill = 0xFF00FF00,
files = { rom6000.b0, rom6000.b1}

}

Figure 11-5. The infile.out File Partitioned Into Four Output Files

The map file (specified with the --map option) is advantageous when you use the ROMS directive with
multiple ranges. The map file shows each range, its parameters, names of associated output files, and a
list of contents (section names and fill values) broken down by address. Example 11-2 is a segment of the
map file resulting from the example in Example 11-1.

286 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com The ROMS Directive

Example 11-2. Map File Output From Example 11-1 Showing Memory Ranges

00004000..00005fff Page=0 Width=8 "EPROM1"

OUTPUT FILES: rom4000.b0 [b0..b7]
rom4000.b1 [b8..b15]

CONTENTS: 00004000..0000487f .text
00004880..00005b7f FILL = 00000000
00005b80..00005fff .data

00006000..00007fff Page=0 Width=8 "EPROM2"

OUTPUT FILES: rom6000.b0 [b0..b7]
rom6000.b1 [b8..b15]

CONTENTS: 00006000..0000633f .data
00006340..000066ff FILL = ff00ff00
00006700..00007c7f .table
00007c80..00007fff FILL = ff00ff00

EPROM1 defines the address range from 0x00004000 through 0x00005FFF with the following sections:

This section ... Has this range ...

.text 0x00004000 through 0x0000487F

.data 0x00005B80 through 0x00005FFF

The rest of the range is filled with 0h (the default fill value), converted into two output files:

• rom4000.b0 contains bits 0 through 7

• rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 0x00006000 through 0x00007FFF with the following sections:

This section ... Has this range ...

.data 0x00006000 through 0x0000633F

.table 0x00006700 through 0x00007C7F

The rest of the range is filled with 0xFF00FF00 (from the specified fill value). The data from this range is
converted into two output files:

• rom6000.b0 contains bits 0 through 7

• rom6000.b1 contains bits 8 through 15

287SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

The SECTIONS Directive www.ti.com

11.5 The SECTIONS Directive

You can convert specific sections of the object file by name with the hex conversion utility SECTIONS
directive. You can also specify those sections that you want to locate in ROM at a different address than
the load address specified in the linker command file. If you:

• Use a SECTIONS directive, the utility converts only the sections that you list in the directive and
ignores all other sections in the object file.

• Do not use a SECTIONS directive, the utility converts all initialized sections that fall within the
configured memory.

Uninitialized sections are never converted, whether or not you specify them in a SECTIONS directive.

Sections Generated by the C/C++ Compiler

NOTE: The TMS320C6000 C/C++ compiler automatically generates these sections:
• Initialized sections: .text, .const, .cinit, and .switch
• Uninitialized sections: .bss, .stack, and .sysmem

Use the SECTIONS directive in a command file. (See Section 11.2.2.) The general syntax for the
SECTIONS directive is:

SECTIONS
{

oname(sname)[:] [paddr=value]
oname(sname)[:] [paddr= boot]
oname(sname)[:] [boot]
...

}

SECTIONS begins the directive definition.
oname identifies the object filename the section is located within. The filename is optional

when only a single input file is given, but required otherwise.
sname identifies a section in the input file. If you specify a section that does not exist, the

utility issues a warning and ignores the name.
paddr=value specifies the physical ROM address at which this section should be located. This value

overrides the section load address given by the linker. This value must be a decimal,
octal, or hexadecimal constant. It can also be the word boot (to indicate a boot table
section for use with a boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a paddr parameter.

boot configures a section for loading by a boot loader. This is equivalent to using
paddr=boot. Boot sections have a physical address determined by the location of the
boot table. The origin of the boot table is specified with the --bootorg option.

For more similarity with the linker's SECTIONS directive, you can use colons after the section names (in
place of the equal sign on the boot keyboard). For example, the following statements are equivalent:
SECTIONS { .text: .data: boot }

SECTIONS { .text: .data = boot }

In the example below, the object file contains six initialized sections: .text, .data, .const, .vectors, .coeff,
and .tables. Suppose you want only .text and .data to be converted. Use a SECTIONS directive to specify
this:
SECTIONS { .text: .data: }

To configure both of these sections for boot loading, add the boot keyword:
SECTIONS { .text = boot .data = boot }

288 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com The Load Image Format (--load_image Option)

Using the --boot Option and the SECTIONS Directive

NOTE: When you use the SECTIONS directive with the boot table (--boot) option, the --boot option
is ignored. You must explicitly specify any boot sections in the SECTIONS directive. For
more information about --boot and other command line options associated with boot tables,
see Section 11.2 and Section 11.10.

11.6 The Load Image Format (--load_image Option)

A load image is an object file which contains the load addresses and initialized sections of one or more
executable files. The load image object file can be used for ROM masking or can be relinked in a
subsequent link step.

11.6.1 Load Image Section Formation

The load image sections are formed by collecting the initialized sections from the input executables. There
are two ways the load image sections are formed:

• Using the ROMS Directive. Each memory range that is given in the ROMS directive denotes a load
image section. The romname is the section name. The origin and length parameters are required. The
memwidth, romwidth, and files parameters are invalid and are ignored.

When using the ROMS directive and the load_image option, the --image option is required.

• Default Load Image Section Formation. If no ROMS directive is given, the load image sections are
formed by combining contiguous initialized sections in the input executables. Sections with gaps
smaller than the target word size are considered contiguous.

The default section names are image_1, image_2, ... If another prefix is desired, the
--section_name_prefix=prefix option can be used.

11.6.2 Load Image Characteristics

All load image sections are initialized data sections. In the absence of a ROMS directive, the load/run
address of the load image section is the load address of the first input section in the load image section. If
the SECTIONS directive was used and a different load address was given using the paddr parameter, this
address will be used.

The load image format always creates a single load image object file. The format of the load image object
file is determined based on the input files. The file is not marked executable and does not contain an entry
point. The default load image object file name is ti_load_image.obj. This can be changed using the
--outfile option. Only one --outfile option is valid when creating a load image, all other occurrences are
ignored.

Concerning Load Image Format

NOTE: These options are invalid when creating a load image:

• --memwidth

• --romwidth

• --order

• --zero

• --byte

If a boot table is being created, either using the SECTIONS directive or the --boot option, the
ROMS directive must be used.

11.7 Excluding a Specified Section

The --exclude section_name option can be used to inform the hex utility to ignore the specified section. If
a SECTIONS directive is used, it overrides the --exclude option.

289SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Assigning Output Filenames www.ti.com

For example, if a SECTIONS directive containing the section name mysect is used and an --exclude
mysect is specified, the SECTIONS directive takes precedence and mysect is not excluded.

The --exclude option has a limited wildcard capability. The * character can be placed at the beginning or
end of the name specifier to indicate a suffix or prefix, respectively. For example, --exclude sect*
disqualifies all sections that begin with the characters sect.

If you specify the --exclude option on the command line with the * wildcard, enter quotes around the
section name and wildcard. For example, --exclude"sect*". Using quotes prevents the * from being
interpreted by the hex conversion utility. If --exclude is in a command file, then the quotes should not be
specified.

If multiple object files are given, the object file in which the section to be excluded can be given in the form
oname(sname). If the object filename is not provided, all sections matching the section name are
excluded. Wildcards cannot be used for the filename, but can appear within the parentheses.

11.8 Assigning Output Filenames

When the hex conversion utility translates your object file into a data format, it partitions the data into one
or more output files. When multiple files are formed by splitting memory words into ROM words, filenames
are always assigned in order from least to most significant, where bits in the memory words are numbered
from right to left. This is true, regardless of target or endian ordering.

The hex conversion utility follows this sequence when assigning output filenames:

1. It looks for the ROMS directive. If a file is associated with a range in the ROMS directive and you
have included a list of files (files = {. . .}) on that range, the utility takes the filename from the list.

For example, assume that the target data is 32-bit words being converted to four files, each eight bits
wide. To name the output files using the ROMS directive, you could specify:

ROMS
{

RANGE1: romwidth=8, files={ xyz.b0 xyz.b1 xyz.b2 xyz.b3 }
}

The utility creates the output files by writing the least significant bits to xyz.b0 and the most significant
bits to xyz.b3.

2. It looks for the --outfile options. You can specify names for the output files by using the --outfile
option. If no filenames are listed in the ROMS directive and you use --outfile options, the utility takes
the filename from the list of --outfile options. The following line has the same effect as the example
above using the ROMS directive:

--outfile=xyz.b0 --outfile=xyz.b1 --outfile=xyz.b2 --outfile=xyz.b3

If both the ROMS directive and --outfile options are used together, the ROMS directive overrides the
--outfile options.

3. It assigns a default filename. If you specify no filenames or fewer names than output files, the utility
assigns a default filename. A default filename consists of the base name from the input file plus a 2- to
3-character extension. The extension has three parts:

(a) A format character, based on the output format (see Section 11.13):

a for ASCII-Hex
i for Intel
m for Motorola-S
t for TI-Tagged
x for Tektronix

(b) The range number in the ROMS directive. Ranges are numbered starting with 0. If there is no
ROMS directive, or only one range, the utility omits this character.

(c) The file number in the set of files for the range, starting with 0 for the least significant file.

For example, assume a.out is for a 32-bit target processor and you are creating Intel format output.
With no output filenames specified, the utility produces four output files named a.i0, a.i1, a.i2, a.i3.

290 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Image Mode and the --fill Option

If you include the following ROMS directive when you invoke the hex conversion utility, you would have
eight output files:

ROMS
{

range1: o = 0x00001000 l = 0x1000
range2: o = 0x00002000 l = 0x1000

}

These output files ... Contain data in these locations ...

a.i00, a.i01, a.i02, a.i03 0x00001000 through 0x00001FFF

a.i10, a.i11, a.i12, a.i13 0x00002000 through 0x00002FFF

11.9 Image Mode and the --fill Option

This section points out the advantages of operating in image mode and describes how to produce output
files with a precise, continuous image of a target memory range.

11.9.1 Generating a Memory Image

With the --image option, the utility generates a memory image by completely filling all of the mapped
ranges specified in the ROMS directive.

An object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. When such a file is converted without the use of image mode, the hex conversion utility bridges
these holes by using the address records in the output file to skip ahead to the start of the next section. In
other words, there may be discontinuities in the output file addresses. Some EPROM programmers do not
support address discontinuities.

In image mode, there are no discontinuities. Each output file contains a continuous stream of data that
corresponds exactly to an address range in target memory. Any holes before, between, or after sections
are filled with a fill value that you supply.

An output file converted by using image mode still has address records, because many of the
hexadecimal formats require an address on each line. However, in image mode, these addresses are
always contiguous.

Defining the Ranges of Target Memory

NOTE: If you use image mode, you must also use a ROMS directive. In image mode, each output
file corresponds directly to a range of target memory. You must define the ranges. If you do
not supply the ranges of target memory, the utility tries to build a memory image of the entire
target processor address space. This is potentially a huge amount of output data. To prevent
this situation, the utility requires you to explicitly restrict the address space with the ROMS
directive.

11.9.2 Specifying a Fill Value

The --fill option specifies a value for filling the holes between sections. The fill value must be specified as
an integer constant following the --fill option. The width of the constant is assumed to be that of a word on
the target processor. For example, specifying --fill=0x0FFF. The constant value is not sign extended.

The hex conversion utility uses a default fill value of 0 if you do not specify a value with the fill option. The
--fill option is valid only when you use --image; otherwise, it is ignored.

11.9.3 Steps to Follow in Using Image Mode

291SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Building a Table for an On-Chip Boot Loader www.ti.com

Step 1: Define the ranges of target memory with a ROMS directive. See Section 11.4.
Step 2: Invoke the hex conversion utility with the --image option. You can optionally use the --zero

option to reset the address origin to 0 for each output file. If you do not specify a fill value
with the ROMS directive and you want a value other than the default of 0, use the --fill option.

11.10 Building a Table for an On-Chip Boot Loader

On the C621x, C671x, and C64x devices, a ROM boot process is supported where the EDMA copies 1K
bytes from the beginning of CE1 (EMIFB CE1 on C64x) to address 0, using default ROM timings. After the
transfer, the CPU begins executing from address 0. In this mode a second level boot load typically occurs,
due to the limited amount of memory copied at boot.

The hex conversion utility supports the second level boot loader by automatically building the boot table.

11.10.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records that instruct the boot loader
to copy blocks of data contained in the table to specified destination addresses. The hex conversion utility
automatically builds the boot table for the boot loader. Using the utility, you specify the sections you want
the boot loader to initialize through the boot table, the table location, and the name of the section
containing the boot loader and where it should be located. The hex conversion utility builds a complete
image of the table and converts it into hexadecimal in the output files. Then, you can burn the table into
ROM.

11.10.2 The Boot Table Format

The boot table format is simple. There is a header record containing a 4-byte field that indicates where the
boot loader should branch after it has completed copying data. After the header, each section that is to be
included in the boot table will have the following:

1. 4-byte field containing the size of the section

2. 4-byte field containing the destination address for the copy

3. The actual data to be copied

Multiple sections can be entered; a termination block containing a 4-byte field of zeros follows the last
section.

292 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Section 1 Size

Section 1 Dest

Section 1 Data

Section 2 Size

Section 2 Dest

Section 2 Data

Section N Size

Section N Dest

Section N Data

0x00000000

www.ti.com Building a Table for an On-Chip Boot Loader

293SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Building a Table for an On-Chip Boot Loader www.ti.com

11.10.3 How to Build the Boot Table

Table 11-2 summarizes the hex conversion utility options available for the boot loader.

Table 11-2. Boot-Loader Options

Option Description

--boot Convert all sections into bootable form (use instead of a SECTIONS directive).

--bootorg=value Specify the source address of the boot loader table.

--bootsection=section value Specify the section name containing the boot loader routine. The value argument tells
the hex utility where to place the boot loader routine.

--entry_point=value Specify the entry point at which to begin execution after boot loading. The value can be
an address or a global symbol.

11.10.3.1 Building the Boot Table

To build the boot table, follow these steps:

Step 1: Link the file. Each block of the boot table data corresponds to an initialized section in the object
file. Uninitialized sections are not converted by the hex conversion utility (see Section 11.5). You
must link into your application a boot loader routine that will read the boot table and perform the
copy operations. It should be linked to its eventual run-time address.
When you select a section for placement in a boot-loader table, the hex conversion utility places
the section's load address in the destination address field for the block in the boot table. The
section content is then treated as raw data for that block. The hex conversion utility does not use
the section run address. When linking, you need not worry about the ROM address or the
construction of the boot table; the hex conversion utility handles this.

Step 2: Identify the bootable sections. You can use the --boot option to tell the hex conversion utility
to configure all sections for boot loading. Or, you can use a SECTIONS directive to select
specific sections to be configured (see Section 11.5). If you use a SECTIONS directive, the
--boot option is ignored.

Step 3: Set the ROM address of the boot table. Use the --bootorg option to set the source address of
the complete table. For example, if you are using the C6711 and booting from memory location
0x90000400, specify --bootorg=0x90000400. The address field for the boot table in the hex
conversion utility output file will then start at 0x90000400.
If you do not use the --bootorg option at all, the utility places the table at the origin of the first
memory range in a ROMS directive. If you do not use a ROMS directive, the table will start at
the first section load address.

Step 4: Set boot-loader-specific options. Set entry point. If --entry_point is not used to set the entry
point, then it will default to the entry point indicated in the object file.

Step 5: Describe the boot routine. If the boot option is used, then you should use the --bootsection
option to indicate to the hex utility which section contains the boot routine. This option will
prevent the boot routine from being in the boot table. The --bootsection option also indicates to
the hex utility where the routine should be placed in ROM. For the C621x, C671x, and C64x
devices, this address would typically be the beginning of CE1 (EMIFB CE1 on C64x). This
option is ignored if --boot is not used.
When the SECTIONS directive is used to explicitly identify which sections should exits in the
boot table, use the PADDR section option to indicate where the boot routine section will exist.

Step 6: Describe your system memory configuration. See Section 11.3 and Section 11.4.

294 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Building a Table for an On-Chip Boot Loader

11.10.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the header records and data for the
boot loader. The address of this section is the boot table origin. As part of the normal conversion process,
the hex conversion utility converts the boot table to hexadecimal format and maps it into the output files
like any other section.

Be sure to leave room in your system memory for the boot table, especially when you are using the
ROMS directive. The boot table cannot overlap other nonboot sections or unconfigured memory. Usually,
this is not a problem; typically, a portion of memory in your system is reserved for the boot table. Simply
configure this memory as one or more ranges in the ROMS directive, and use the --bootorg option to
specify the starting address.

11.10.3.3 Setting the Entry Point for the Boot Table

After the boot routine finishes copying data, it branches to the entry point defined the object file. By using
the --entry_point option with the hex conversion utility, you can set the entry point to a different address.

For example, if you want your program to start running at address 0x0123 after loading, specify
--entry_point=0x0123 on the command line or in a command file. You can determine the --entry_point
address by looking at the map file that the linker generates.

Valid Entry Points

NOTE: The value can be a constant, or it can be a symbol that is externally defined (for example,
with a .global) in the assembly source.

11.10.4 Using the C6000 Boot Loader

This subsection explains how to use the hex conversion utility with the boot loader for C6000 devices
through sample hex utility command files. Example 11-3 uses the SECTIONS directive to specify exactly
which sections will be placed in the boot table.

Example 11-3. Sample Command File for Booting From a C6000 EPROM

abc.out /* input file */
--ascii /* ascii format */
--image /* create complete ROM image */
--zero /* reset address origin to 0 */
--memwidth 8 /* 8-bit memory */
--map=abchex.map /* create a hex map file */
--bootorg=0x90000400 /* external memory boot */

ROMS
{

FLASH: org=0x90000000, len=0x20000, romwidth=8, files={abc.hex}
}

SECTIONS
{

.boot_load: PADDR=0x90000000

.text: BOOT

.cinit: BOOT

.const: BOOT
}

295SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Building a Table for an On-Chip Boot Loader www.ti.com

Example 11-4 does not explicitly name the boot sections with the SECTIONS directive. Instead, it uses the
--boot option to indicate that all initialized sections should be placed in the boot table. It also uses the
--bootsection option to distinguish the section containing the boot routine.

Example 11-4. Alternative Sample Command File for Booting From a C6000 EPROM

abc.out /* input file */
--ascii /* ascii format */
--image /* create complete Rom image */
--zero /* reset address origin to 0 */
--memwidth=8 /* 8-bit memory */
--map=abchex.map /* create a hex map file */
--boot /* create boot table */
--bootorg=0x90000400 /* external memory boot */
--bootsection=.boot_load 0x90000000 /* give boot section & addr */

ROMS
{
FLASH: org=0x90000000, len=0x20000, romwidth=8, files={abc.hex}

}

296 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Controlling the ROM Device Address

11.11 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device address. The EPROM
programmer burns the data into the location specified by the hex conversion utility output file address field.
The hex conversion utility offers some mechanisms to control the starting address in ROM of each
section. However, many EPROM programmers offer direct control of the location in ROM in which the
data is burned.

Depending on whether or not you are using the boot loader, the hex conversion utility output file
controlling mechanisms are different.

Non-boot loader mode. The address field of the hex conversion utility output file is controlled by the
following mechanisms listed from low to high priority:

1. The linker command file. By default, the address field of the hex conversion utility output file is the
load address (as given in the linker command file).

2. The paddr parameter of the SECTIONS directive. When the paddr parameter is specified for a
section, the hex conversion utility bypasses the section load address and places the section in the
address specified by paddr.

3. The --zero option. When you use the --zero option, the utility resets the address origin to 0 for each
output file. Since each file starts at 0 and counts upward, any address records represent offsets from
the beginning of the file (the address within the ROM) rather than actual target addresses of the data.

You must use the --zero option in conjunction with the --image option to force the starting address in
each output file to be zero. If you specify the --zero option without the --image option, the utility issues
a warning and ignores the --zero option.

Boot-Loader Mode. When the boot loader is used, the hex conversion utility places the different sections
that are in the boot table into consecutive memory locations. Each section becomes a boot table block
whose destination address is equal to the linker-assigned section load address.

In a boot table, the address field of the hex conversion utility output file is not related to the section load
addresses assigned by the linker. The address fields of the boot table are simply offsets to the beginning
of the table. The section load addresses assigned by the linker will be encoded into the boot table along
with the size of the section and the data contained within the section. These addresses will be used to
store the data into memory during the boot load process.

The beginning of the boot table defaults to the linked load address of the first bootable section in the input
file, unless you use one of the following mechanisms, listed here from low to high priority. Higher priority
mechanisms override the values set by low priority options in an overlapping range.

1. The ROM origin specified in the ROMS directive. The hex conversion utility places the boot table at
the origin of the first memory range in a ROMS directive.

2. The --bootorg option. The hex conversion utility places the boot table at the address specified by the
--bootorg option if you select boot loading from memory.

297SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Control Hex Conversion Utility Diagnostics www.ti.com

11.12 Control Hex Conversion Utility Diagnostics

The hex conversion utility uses certain C/C++ compiler options to control hex-converter-generated
diagnostics.

--diag_error=id Categorizes the diagnostic identified by id as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_error=id to recategorize the
diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

--diag_remark=id Categorizes the diagnostic identified by id as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_remark=id to recategorize the
diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

--diag_suppress=id Suppresses the diagnostic identified by id. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_suppress=id to suppress the diagnostic.
You can only suppress discretionary diagnostics.

--diag_warning=id Categorizes the diagnostic identified by id as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_warning=id to recategorize the
diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

--display_error_number Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and
--diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the TMS320C6000 Optimizing Compiler User's Guide
for more information on understanding diagnostic messages.

--issue_remarks Issues remarks (nonserious warnings), which are suppressed by default.
--no_warnings Suppresses warning diagnostics (errors are still issued).
--set_error_limit=count Sets the error limit to count, which can be any decimal value. The linker

abandons linking after this number of errors. (The default is 100.)
--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap

and indicate the position of the error in the source line

298 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

^B $AXXXXXXXX,

XX XX XX XX XX XX XX XX XX XX. . .^C

Nonprintable
start code

Nonprintable
end codeAddress

Data byte

www.ti.com Description of the Object Formats

11.13 Description of the Object Formats

The hex conversion utility has options that identify each format. Table 11-3 specifies the format options.
They are described in the following sections.

• You need to use only one of these options on the command line. If you use more than one option, the
last one you list overrides the others.

• The default format is Tektronix (--tektronix option).

Table 11-3. Options for Specifying Hex Conversion Formats

Option Alias Format Address Bits Default Width

--ascii -a ASCII-Hex 16 8

--intel -i Intel 32 8

--motorola=1 -m1 Motorola-S1 16 8

--motorola=2 -m2 Motorola-S2 24 8

--motorola=3 -m3 Motorola-S3 32 8

--ti-tagged -t TI-Tagged 16 16

--ti_txt TI_TXT 8 8

--tektronix -x Tektronix 32 8

Address bits determine how many bits of the address information the format supports. Formats with
16-bit addresses support addresses up to 64K only. The utility truncates target addresses to fit in the
number of available bits.

The default width determines the default output width of the format. You can change the default width by
using the --romwidth option or by using the romwidth parameter in the ROMS directive. You cannot
change the default width of the TI-Tagged format, which supports a 16-bit width only.

11.13.1 ASCII-Hex Object Format (--ascii Option)

The ASCII-Hex object format supports 32-bit addresses. The format consists of a byte stream with bytes
separated by spaces. Figure 11-6 illustrates the ASCII-Hex format.

Figure 11-6. ASCII-Hex Object Format

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an ASCII ETX character (ctrl-C,
03h). Address records are indicated with $AXXXXXXX, in which XXXXXXXX is a 8-digit (16-bit)
hexadecimal address. The address records are present only in the following situations:

• When discontinuities occur

• When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the --image and --zero options. This
creates output that is simply a list of byte values.

299SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

:00000001FF

Start
character

Byte
count

Checksum

Data
records

Record
type

Address
Most significant 16 bits

Extended linear
address record

End-of-file
record

Description of the Object Formats www.ti.com

11.13.2 Intel MCS-86 Object Format (--intel Option)

The Intel object format supports 16-bit addresses and 32-bit extended addresses. Intel format consists of
a 9-character (4-field) prefix (which defines the start of record, byte count, load address, and record type),
the data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record

01 End-of-file record

04 Extended linear address record

Record type00, the data record, begins with a colon (:) and is followed by the byte count, the address of
the first data byte, the record type (00), and the checksum. The address is the least significant 16 bits of a
32-bit address; this value is concatenated with the value from the most recent 04 (extended linear
address) record to create a full 32-bit address. The checksum is the 2s complement (in binary form) of the
preceding bytes in the record, including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count, the
address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins with a
colon (:), followed by the byte count, a dummy address of 0h, the record type (04), the most significant
16 bits of the address, and the checksum. The subsequent address fields in the data records contain the
least significant bytes of the address.

Figure 11-7 illustrates the Intel hexadecimal object format.

Figure 11-7. Intel Hexadecimal Object Format

300 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

S00600004844521B

S31A0001FFEB00FA

S70500000000FA

Record
type

Byte count
Checksum

Data records

Address

Header record

Termination
record

Checksum

Address for S3 records

www.ti.com Description of the Object Formats

11.13.3 Motorola Exorciser Object Format (--motorola Option)

The Motorola S1, S2, and S3 formats support 16-bit, 24-bit, and 32-bit addresses, respectively. The
formats consist of a start-of-file (header) record, data records, and an end-of-file (termination) record.
Each record consists of five fields: record type, byte count, address, data, and checksum. The three
record types are:

Record Type Description

S0 Header record

S1 Code/data record for 16-bit addresses (S1 format)

S2 Code/data record for 24-bit addresses (S2 format)

S3 Code/data record for 32-bit addresses (S3 format)

S7 Termination record for 32-bit addresses (S3 format)

S8 Termination record for 24-bit addresses (S2 format)

S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and byte count itself.

The checksum is the least significant byte of the 1s complement of the sum of the values represented by
the pairs of characters making up the byte count, address, and the code/data fields.

Figure 11-8 illustrates the Motorola-S object format.

Figure 11-8. Motorola-S Format

301SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

%15621810000000202020202020

Block length
1ah = 26

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+
0+

2+0+2+0+2+0+2+0+2+0+2+
0

Load address: 10000000h

Header
character

Block type: 6
(data)

Object code: 6 bytes

Length of
load address

Description of the Object Formats www.ti.com

11.13.4 Extended Tektronix Object Format (--tektronix Option)

The Tektronix object format supports 32-bit addresses and has two types of records:

Data records contains the header field, the load address, and the object code.
Termination records signifies the end of a module.

The header field in the data record contains the following information:

Number of ASCII
Item Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %

Block type 1 6 = data record
8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the record except the % and the
checksum itself.

The load address in the data record specifies where the object code will be located. The first digit
specifies the address length; this is always 8. The remaining characters of the data record contain the
object code, two characters per byte.

Figure 11-9 illustrates the Tektronix object format.

Figure 11-9. Extended Tektronix Object Format

302 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F245F

:

Tag charactersProgram
identifier

Load
address

Data
words Checksum

Data
records

End-of-file
record

Start-of-file
record

www.ti.com Description of the Object Formats

11.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)

The Texas Instruments SDSMAC (TI-Tagged) object format supports 16-bit addresses, including
start-of-file record, data records, and end-of-file record. Each data records consists of a series of small
fields and is signified by a tag character:

Tag Character Description

K Followed by the program identifier

7 Followed by a checksum

8 Followed by a dummy checksum (ignored)

9 Followed by a 16-bit load address

B Followed by a data word (four characters)

F Identifies the end of a data record

* Followed by a data byte (two characters)

Figure 11-10 illustrates the tag characters and fields in TI-Tagged object format.

Figure 11-10. TI-Tagged Object Format

If any data fields appear before the first address, the first field is assigned address 0000h. Address fields
may be expressed but not required for any data byte. The checksum field, preceded by the tag character
7, is the 2s complement of the sum of the 8-bit ASCII values of characters, beginning with the first tag
character and ending with the checksum tag character (7 or 8). The end-of-file record is a colon (:).

303SPRU186V–July 2011 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

@ADDR1

DATA01 DATA02 DATA16

DATA17 DATA32 DATA32

DATAm DATAn

@ADDR2

DATA01 DATAn

q

Section
start

End-of-line
character

Data
bytes

Data
bytes

Section
start

Description of the Object Formats www.ti.com

11.13.6 TI-TXT Hex Format (--ti_txt Option)

The TI-TXT hex format supports 16-bit hexadecimal data. It consists of section start addresses, data byte,
and an end-of-file character. These restrictions apply:

• The number of sections is unlimited.

• Each hexadecimal start address must be even.

• Each line must have 16 data bytes, except the last line of a section.

• Data bytes are separated by a single space.

• The end-of-file termination tag q is mandatory.

The data record contains the following information:

Item Description

@ADDR Hexadecimal start address of a section

DATAn Hexadecimal data byte

q End-of-file termination character

Figure 11-11. TI-TXT Object Format

Example 11-5. TI-TXT Object Format

@F000
31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F
@FFFE
00 F0
Q

304 Hex Conversion Utility Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Chapter 12
SPRU186V–July 2011

Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code.

Topic ... Page

12.1 Overview of the .cdecls Directive ... 306
12.2 Notes on C/C++ Conversions .. 306
12.3 Notes on C++ Specific Conversions ... 310
12.4 Special Assembler Support ... 311

305SPRU186V–July 2011 Sharing C/C++ Header Files With Assembly Source
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Overview of the .cdecls Directive www.ti.com

12.1 Overview of the .cdecls Directive

The .cdecls directive allows programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between the C and assembly code. Any legal C/C++ can be used
in a .cdecls block and the C/C++ declarations will cause suitable assembly to be generated automatically.
This allows the programmer to reference the C/C++ constructs in assembly code — calling functions,
allocating space, and accessing structure members — using the equivalent assembly mechanisms. While
function and variable definitions are ignored, most common C/C++ elements are converted to assembly:
enumerations, (non function-like) macros, function and variable prototypes, structures, and unions.

See the .cdecls directive description for details on the syntax of the .cdecls assembler directive.

The .cdecls directive can appear anywhere in an assembly source file, and can occur multiple times within
a file. However, the C/C++ environment created by one .cdecls is not inherited by a later .cdecls; the
C/C++ environment starts over for each .cdecls instance.

For example, the following code causes the warning to be issued:
.cdecls C,NOLIST
%{

#define ASMTEST 1
%}

.cdecls C,NOLIST
%{

#ifndef ASMTEST
#warn "ASMTEST not defined!" /* will be issued */

#endif
%}

Therefore, a typical use of the .cdecls block is expected to be a single usage near the beginning of the
assembly source file, in which all necessary C/C++ header files are included.

Use the compiler --include_path=path options to specify additional include file paths needed for the header
files used in assembly, as you would when compiling C files.

Any C/C++ errors or warnings generated by the code of the .cdecls are emitted as they normally would for
the C/C++ source code. C/C++ errors cause the directive to fail, and any resulting converted assembly is
not included.

C/C++ constructs that cannot be converted, such as function-like macros or variable definitions, cause a
comment to be output to the converted assembly file. For example:
; ASM HEADER WARNING - variable definition 'ABCD' ignored

The prefix ASM HEADER WARNING appears at the beginning of each message. To see the warnings,
either the WARN parameter needs to be specified so the messages are displayed on STDERR, or else
the LIST parameter needs to be specified so the warnings appear in the listing file, if any.

Finally, note that the converted assembly code does not appear in the same order as the original C/C++
source code and C/C++ constructs may be simplified to a normalized form during the conversion process,
but this should not affect their final usage.

12.2 Notes on C/C++ Conversions

The following sections describe C and C++ conversion elements that you need to be aware of when
sharing header files with assembly source.

12.2.1 Comments

Comments are consumed entirely at the C level, and do not appear in the resulting converted assembly
file.

306 Sharing C/C++ Header Files With Assembly Source SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Notes on C/C++ Conversions

12.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)

Conditional compilation is handled entirely at the C level during the conversion step. Define any necessary
macros either on the command line (using the compiler --define=name=value option) or within a .cdecls
block using #define. The #if, #ifdef, etc. C/C++ directives are not converted to assembly .if, .else, .elseif,
and .endif directives.

12.2.3 Pragmas

Pragmas found in the C/C++ source code cause a warning to be generated as they are not converted.
They have no other effect on the resulting assembly file. See the .cdecls topic for the WARN and
NOWARN parameter discussion for where these warnings are created.

12.2.4 The #error and #warning Directives

These preprocessor directives are handled completely by the compiler during the parsing step of
conversion. If one of these directives is encountered, the appropriate error or warning message is emitted.
These directives are not converted to .emsg or .wmsg in the assembly output.

12.2.5 Predefined symbol _ _ASM_HEADER_ _

The C/C++ macro _ _ASM_HEADER_ _ is defined in the compiler while processing code within .cdecls.
This allows you to make changes in your code, such as not compiling definitions, during the .cdecls
processing.

Be Careful With the _ _ASM_HEADER_ _ Macro

NOTE: You must be very careful not to use this macro to introduce any changes in the code that
could result in inconsistencies between the code processed while compiling the C/C++
source and while converting to assembly.

12.2.6 Usage Within C/C++ asm() Statements

The .cdecls directive is not allowed within C/C++ asm() statements and will cause an error to be
generated.

12.2.7 The #include Directive

The C/C++ #include preprocessor directive is handled transparently by the compiler during the conversion
step. Such #includes can be nested as deeply as desired as in C/C++ source. The assembly directives
.include and .copy are not used or needed within a .cdecls. Use the command line --include_path option to
specify additional paths to be searched for included files, as you would for C compilation.

12.2.8 Conversion of #define Macros

Only object-like macros are converted to assembly. Function-like macros have no assembly
representation and so cannot be converted. Pre-defined and built-in C/C++ macros are not converted to
assembly (i.e., __FILE__, __TIME__, __TI_COMPILER_VERSION__, etc.). For example, this code is
converted to assembly because it is an object-like macro:
#define NAME Charley

This code is not converted to assembly because it is a function-like macro:
#define MAX(x,y) (x>y ? x : y)

Some macros, while they are converted, have no functional use in the containing assembly file. For
example, the following results in the assembly substitution symbol FOREVER being set to the value
while(1), although this has no useful use in assembly because while(1) is not legal assembly code.
#define FOREVER while(1)

307SPRU186V–July 2011 Sharing C/C++ Header Files With Assembly Source
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Notes on C/C++ Conversions www.ti.com

Macro values are not interpreted as they are converted. For example, the following results in the
assembler substitution symbol OFFSET being set to the literal string value 5+12 and not the value 17.
This happens because the semantics of the C/C++ language require that macros are evaluated in context
and not when they are parsed.
#define OFFSET 5+12

Because macros in C/C++ are evaluated in their usage context, C/C++ printf escape sequences such as
\n are not converted to a single character in the converted assembly macro. See Section 12.2.11 for
suggestions on how to use C/C++ macro strings.

Macros are converted using the new .define directive (see Section 12.4.2), which functions similarly to the
.asg assembler directive. The exception is that .define disallows redefinitions of register symbols and
mnemonics to prevent the conversion from corrupting the basic assembly environment. To remove a
macro from the assembly scope, .undef can be used following the .cdecls that defines it (see
Section 12.4.3).

The macro functionality of # (stringize operator) is only useful within functional macros. Since functional
macros are not supported by this process, # is not supported either. The concatenation operator ## is only
useful in a functional context, but can be used degenerately to concatenate two strings and so it is
supported in that context.

12.2.9 The #undef Directive

Symbols undefined using the #undef directive before the end of the .cdecls are not converted to assembly.

12.2.10 Enumerations

Enumeration members are converted to .enum elements in assembly. For example:
enum state { ACTIVE=0x10, SLEEPING=0x01, INTERRUPT=0x100, POWEROFF, LAST};

is converted to the following assembly code:
state .enum
ACTIVE .emember 16
SLEEPING .emember 1
NTERRUPT .emember 256
POWEROFF .emember 257
LAST .emember 258

.endenum

The members are used via the pseudo-scoping created by the .enum directive.

The usage is similar to that for accessing structure members, enum_name.member.

This pseudo-scoping is used to prevent enumeration member names from corrupting other symbols within
the assembly environment.

12.2.11 C Strings

Because C string escapes such as \n and \t are not converted to hex characters 0x0A and 0x09 until their
use in a string constant in a C/C++ program, C macros whose values are strings cannot be represented
as expected in assembly substitution symbols. For example:
#define MSG "\tHI\n"

becomes, in assembly:
.define """\tHI\n""",MSG ; 6 quoted characters! not 5!

When used in a C string context, you expect this statement to be converted to 5 characters (tab, H, I,
newline, NULL), but the .string assembler directive does not know how to perform the C escape
conversions.

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++. Using the above symbol MSG with a .cstring directive results in 5
characters of memory being allocated, the same characters as would result if used in a C/C++ strong
context. (See Section 12.4.7 for the .cstring directive syntax.)

308 Sharing C/C++ Header Files With Assembly Source SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Notes on C/C++ Conversions

12.2.12 C/C++ Built-In Functions

The C/C++ built-in functions, such as sizeof(), are not translated to their assembly counterparts, if any, if
they are used in macros. Also, their C expression values are not inserted into the resulting assembly
macro because macros are evaluated in context and there is no active context when converting the
macros to assembly.

Suitable functions such as $sizeof() are available in assembly expressions. However, as the basic types
such as int/char/float have no type representation in assembly, there is no way to ask for $sizeof(int), for
example, in assembly.

12.2.13 Structures and Unions

C/C++ structures and unions are converted to assembly .struct and .union elements. Padding and ending
alignments are added as necessary to make the resulting assembly structure have the same size and
member offsets as the C/C++ source. The primary purpose is to allow access to members of C/C++
structures, as well as to facilitate debugging of the assembly code. For nested structures, the assembly
.tag feature is used to refer to other structures/unions.

The alignment is also passed from the C/C++ source so that the assembly symbol is marked with the
same alignment as the C/C++ symbol. (See Section 12.2.3 for information about pragmas, which may
attempt to modify structures.) Because the alignment of structures is stored in the assembly symbol,
built-in assembly functions like $sizeof() and $alignof() can be used on the resulting structure name
symbol.

When using unnamed structures (or unions) in typedefs, such as:
typedef struct { int a_member; } mystrname;

This is really a shorthand way of writing:
struct temporary_name { int a_member; };
typedef temporary_name mystrname;

The conversion processes the above statements in the same manner: generating a temporary name for
the structure and then using .define to output a typedef from the temporary name to the user name. You
should use your mystrname in assembly the same as you would in C/C++, but do not be confused by the
assembly structure definition in the list, which contains the temporary name. You can avoid the temporary
name by specifying a name for the structure, as in:
typedef struct a_st_name { ... } mystrname;

If a shorthand method is used in C to declare a variable with a particular structure, for example:
extern struct a_name { int a_member; } a_variable;

Then after the structure is converted to assembly, a .tag directive is generated to declare the structure of
the external variable, such as:
_a_variable .tag a_st_name

This allows you to refer to _a_variable.a_member in your assembly code.

12.2.14 Function/Variable Prototypes

Non-static function and variable prototypes (not definitions) will result in a .global directive being generated
for each symbol found.

See Section 12.3.1 for C++ name mangling issues.

Function and variable definitions will result in a warning message being generated (see the
WARN/NOWARN parameter discussion for where these warnings are created) for each, and they will not
be represented in the converted assembly.

The assembly symbol representing the variable declarations will not contain type information about those
symbols. Only a .global will be issued for them. Therefore, it is your responsibility to ensure the symbol is
used appropriately.

See Section 12.2.13 for information on variables names which are of a structure/union type.

309SPRU186V–July 2011 Sharing C/C++ Header Files With Assembly Source
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Notes on C++ Specific Conversions www.ti.com

12.2.15 C Constant Suffixes

The C constant suffixes u, l, and f are passed to the assembly unchanged. The assembler will ignore
these suffixes if used in assembly expressions.

12.2.16 Basic C/C++ Types

Only complex types (structures and unions) in the C/C++ source code are converted to assembly. Basic
types such as int, char, or float are not converted or represented in assembly beyond any existing .int,
.char, .float, etc. directives that previously existed in assembly.

Typedefs of basic types are therefore also not represented in the converted assembly.

12.3 Notes on C++ Specific Conversions

The following sections describe C++ specific conversion elements that you need to be aware of when
sharing header files with assembly source.

12.3.1 Name Mangling

Symbol names may be mangled in C++ source files. When mangling occurs, the converted assembly will
use the mangled names to avoid symbol name clashes. You can use the demangler (dem6x) to demangle
names and identify the correct symbols to use in assembly.

To defeat name mangling in C++ for symbols where polymorphism (calling a function of the same name
with different kinds of arguments) is not required, use the following syntax:
extern "C" void somefunc(int arg);

The above format is the short method for declaring a single function. To use this method for multiple
functions, you can also use the following syntax:
extern "C"
{

void somefunc(int arg);
int anotherfunc(int arg);
...

}

12.3.2 Derived Classes

Derived classes are only partially supported when converting to assembly because of issues related to
C++ scoping which does not exist in assembly. The greatest difference is that base class members do not
automatically become full (top-level) members of the derived class. For example:
--

class base
{

public:
int b1;

};

class derived : public base
{

public:
int d1;

}

In C++ code, the class derived would contain both integers b1 and d1. In the converted assembly
structure "derived", the members of the base class must be accessed using the name of the base class,
such as derived.__b_base.b1 rather than the expected derived.b1.

A non-virtual, non-empty base class will have __b_ prepended to its name within the derived class to
signify it is a base class name. That is why the example above is derived.__b_base.b1 and not simply
derived.base.b1.

310 Sharing C/C++ Header Files With Assembly Source SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Special Assembler Support

12.3.3 Templates

No support exists for templates.

12.3.4 Virtual Functions

No support exists for virtual functions, as they have no assembly representation.

12.4 Special Assembler Support

12.4.1 Enumerations (.enum/.emember/.endenum)

New directives have been created to support a pseudo-scoping for enumerations.

The format of these new directives is:

ENUM_NAME .enum
MEMBER1 .emember [value]
MEMBER2 .emember [value]
...

.endenum

The .enum directive begins the enumeration definition and .endenum terminates it.

The enumeration name (ENUM_NAME) cannot be used to allocate space; its size is reported as zero.

The format to use the value of a member is ENUM_NAME.MEMBER, similar to a structure member
usage.

The .emember directive optionally accepts the value to set the member to, just as in C/C++. If not
specified, the member takes a value one more than the previous member. As in C/C++, member names
cannot be duplicated, although values can be. Unless specified with .emember, the first enumeration
member will be given the value 0 (zero), as in C/C++.

The .endenum directive cannot be used with a label, as structure .endstruct directives can, because the
.endenum directive has no value like the .endstruct does (containing the size of the structure).

Conditional compilation directives (.if/.else/.elseif/.endif) are the only other non-enumeration code allowed
within the .enum/.endenum sequence.

12.4.2 The .define Directive

The new .define directive functions in the same manner as the .asg directive, except that .define disallows
creation of a substitution symbol that has the same name as a register symbol or mnemonic. It does not
create a new symbol name space in the assembler, rather it uses the existing substitution symbol name
space. The syntax for the directive is:

.define substitution string , substitution symbol name

The .define directive is used to prevent corruption of the assembly environment when converting C/C++
headers.

12.4.3 The .undefine/.unasg Directives

The .undef directive is used to remove the definition of a substitution symbol created using .define or .asg.
This directive will remove the named symbol from the substitution symbol table from the point of the .undef
to the end of the assembly file. The syntax for these directives is:

.undefine substitution symbol name

.unasg substitution symbol name

This can be used to remove from the assembly environment any C/C++ macros that may cause a
problem.

311SPRU186V–July 2011 Sharing C/C++ Header Files With Assembly Source
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Special Assembler Support www.ti.com

Also see Section 12.4.2, which covers the .define directive.

12.4.4 The $defined() Built-In Function

The $defined directive returns true/1 or false/0 depending on whether the name exists in the current
substitution symbol table or the standard symbol table. In essence $defined returns TRUE if the
assembler has any user symbol in scope by that name. This differs from $isdefed in that $isdefed only
tests for NON-substitution symbols. The syntax is:

$defined(substitution symbol name)

A statement such as ".if $defined(macroname)" is then similar to the C code "#ifdef macroname".

See Section 12.4.2 and Section 12.4.3 for the use of .define and .undef in assembly.

12.4.5 The $sizeof Built-In Function

The new assembly built-in function $sizeof() can be used to query the size of a structure in assembly. It is
an alias for the already existing $structsz(). The syntax is:

$sizeof(structure name)

The $sizeof function can then be used similarly to the C built-in function sizeof().

The assembler's $sizeof() built-in function cannot be used to ask for the size of basic C/C++ types, such
as $sizeof(int), because those basic type names are not represented in assembly. Only complex types are
converted from C/C++ to assembly.

Also see Section 12.2.12, which notes that this conversion does not happen automatically if the C/C++
sizeof() built-in function is used within a macro.

12.4.6 Structure/Union Alignment & $alignof()

The assembly .struct and .union directives now take an optional second argument which can be used to
specify a minimum alignment to be applied to the symbol name. This is used by the conversion process to
pass the specific alignment from C/C++ to assembly.

The assembly built-in function $alignof() can be used to report the alignment of these structures. This can
be used even on assembly structures, and the function will return the minimum alignment calculated by
the assembler.

12.4.7 The .cstring Directive

You can use the new .cstring directive to cause the escape sequences and NULL termination to be
properly handled as they would in C/C++.

.cstring "String with C escapes.\nWill be NULL terminated.\012"

See Section 12.2.11 for more information on the new .cstring directive.

312 Sharing C/C++ Header Files With Assembly Source SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Appendix A
SPRU186V–July 2011

Symbolic Debugging Directives

The assembler supports several directives that the TMS320C6000 C/C++ compiler uses for symbolic
debugging. These directives differ for the two debugging formats, DWARF and COFF.

These directives are not meant for use by assembly-language programmers. They require arguments that
can be difficult to calculate manually, and their usage must conform to a predetermined agreement
between the compiler, the assembler, and the debugger. This appendix documents these directives for
informational purposes only.

Topic ... Page

A.1 DWARF Debugging Format ... 314
A.2 COFF Debugging Format .. 314
A.3 Debug Directive Syntax .. 315

313SPRU186V–July 2011 Symbolic Debugging Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

DWARF Debugging Format www.ti.com

A.1 DWARF Debugging Format

A subset of the DWARF symbolic debugging directives are always listed in the assembly language file that
the compiler creates for program analysis purposes. To list the complete set used for full symbolic debug,
invoke the compiler with the --symdebug:dwarf option, as shown below:
cl6x --symdebug:dwarf --keep_asm input_file

The --keep_asm option instructs the compiler to retain the generated assembly file.

To disable the generation of all symbolic debug directives, invoke the compiler with the -symdebug:none
option:
cl6x --symdebug:none --keep_asm input_file

The DWARF debugging format consists of the following directives:

• The .dwtag and .dwendtag directives define a Debug Information Entry (DIE) in the .debug_info
section.

• The .dwattr directive adds an attribute to an existing DIE.

• The .dwpsn directive identifies the source position of a C/C++ statement.

• The .dwcie and .dwendentry directives define a Common Information Entry (CIE) in the .debug_frame
section.

• The .dwfde and .dwendentry directives define a Frame Description Entry (FDE) in the .debug_frame
section.

• The .dwcfi directive defines a call frame instruction for a CIE or FDE.

A.2 COFF Debugging Format

COFF symbolic debug is now obsolete. These directives are supported for backwards-compatibility only.
The decision to switch to DWARF as the symbolic debug format was made to overcome many limitations
of COFF symbolic debug, including the absence of C++ support.

The COFF debugging format consists of the following directives:

• The .sym directive defines a global variable, a local variable, or a function. Several parameters allow
you to associate various debugging information with the variable or function.

• The .stag, .etag, and .utag directives define structures, enumerations, and unions, respectively. The
.member directive specifies a member of a structure, enumeration, or union. The .eos directive ends a
structure, enumeration, or union definition.

• The .func and .endfunc directives specify the beginning and ending lines of a C/C++ function.

• The .block and .endblock directives specify the bounds of C/C++ blocks.

• The .file directive defines a symbol in the symbol table that identifies the current source filename.

• The .line directive identifies the line number of a C/C++ source statement.

314 Symbolic Debugging Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Debug Directive Syntax

A.3 Debug Directive Syntax

Table A-1 is an alphabetical listing of the symbolic debugging directives. For information on the C/C++
compiler, refer to the TMS320C6000 Optimizing Compiler User's Guide.

Table A-1. Symbolic Debugging Directives

Label Directive Arguments

.block [beginning line number]

.dwattr DIE label , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value) [, ...]

.dwcfi call frame instruction opcode[, operand[, operand]]

CIE label .dwcie version , return address register

.dwendentry

.dwendtag

.dwfde CIE label

.dwpsn " filename " , line number , column number

DIE label .dwtag DIE tag name , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value)
[, ...]

.endblock [ending line number]

.endfunc [ending line number[, register mask[, frame size]]]

.eos

.etag name[, size]

.file " filename "

.func [beginning line number]

.line line number[, address]

.member name , value[, type , storage class , size , tag , dims]

.stag name[, size]

.sym name , value[, type , storage class , size , tag , dims]

.utag name[, size]

315SPRU186V–July 2011 Symbolic Debugging Directives
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

316 Symbolic Debugging Directives SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Appendix B
SPRU186V–July 2011

XML Link Information File Description

The TMS320C6000 linker supports the generation of an XML link information file via the --xml_link_info
file option. This option causes the linker to generate a well-formed XML file containing detailed information
about the result of a link. The information included in this file includes all of the information that is currently
produced in a linker-generated map file.

As the linker evolves, the XML link information file may be extended to include additional information that
could be useful for static analysis of linker results.

This appendix enumerates all of the elements that are generated by the linker into the XML link
information file.

Topic ... Page

B.1 XML Information File Element Types .. 318
B.2 Document Elements ... 318

317SPRU186V–July 2011 XML Link Information File Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

XML Information File Element Types www.ti.com

B.1 XML Information File Element Types

These element types will be generated by the linker:

• Container elements represent an object that contains other elements that describe the object.
Container elements have an id attribute that makes them accessible from other elements.

• String elements contain a string representation of their value.

• Constant elements contain a 32-bit unsigned long representation of their value (with a 0x prefix).

• Reference elements are empty elements that contain an idref attribute that specifies a link to another
container element.

In Section B.2, the element type is specified for each element in parentheses following the element
description. For instance, the <link_time> element lists the time of the link execution (string).

B.2 Document Elements

The root element, or the document element, is <link_info>. All other elements contained in the XML link
information file are children of the <link_info> element. The following sections describe the elements that
an XML information file can contain.

B.2.1 Header Elements

The first elements in the XML link information file provide general information about the linker and the link
session:

• The <banner> element lists the name of the executable and the version information (string).

• The <copyright> element lists the TI copyright information (string).

• The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).

• The <output_file> element lists the name of the linked output file generated (string).

• The <entry_point> element specifies the program entry point, as determined by the linker (container)
with two entries:

– The <name> is the entry point symbol name, if any (string).

– The <address> is the entry point address (constant).

Example B-1. Header Element for the hi.out Output File

<banner>TMS320Cxx Linker Version x.xx (Jan 6 2008)</banner>
<copyright>Copyright (c) 1996-2008 Texas Instruments Incorporated</copyright>
<link_time>0x43dfd8a4</link_time>
<output_file>hi.out</output_file>
<entry_point>

<name>_c_int00</name>
<address>0xaf80</address>

</entry_point>

318 XML Link Information File Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Document Elements

B.2.2 Input File List

The next section of the XML link information file is the input file list, which is delimited with a
<input_file_list> container element. The <input_file_list> can contain any number of <input_file>
elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has an id attribute
that can be referenced by other elements, such as an <object_component>. An <input_file> is a container
element enclosing the following elements:

• The <path> element names a directory path, if applicable (string).

• The <kind> element specifies a file type, either archive or object (string).

• The <file> element specifies an archive name or filename (string).

• The <name> element specifies an object file name, or archive member name (string).

Example B-2. Input File List for the hi.out Output File

<input_file_list>
<input_file id="fl-1">

<kind>object</kind>
<file>hi.obj</file>
<name>hi.obj</name>

</input_file>
<input_file id="fl-2">

<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>boot.obj</name>

</input_file>
<input_file id="fl-3">

<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>exit.obj</name>

</input_file>
<input_file id="fl-4">

<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>printf.obj</name>

</input_file>
...
</input_file_list>

319SPRU186V–July 2011 XML Link Information File Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Document Elements www.ti.com

B.2.3 Object Component List

The next section of the XML link information file contains a specification of all of the object components
that are involved in the link. An example of an object component is an input section. In general, an object
component is the smallest piece of object that can be manipulated by the linker.

The <object_component_list> is a container element enclosing any number of <object_component>
elements.

Each <object_component> specifies a single object component. Each <object_component> has an id
attribute so that it can be referenced directly from other elements, such as a <logical_group>. An
<object_component> is a container element enclosing the following elements:

• The <name> element names the object component (string).

• The <load_address> element specifies the load-time address of the object component (constant).

• The <run_address> element specifies the run-time address of the object component (constant).

• The <size> element specifies the size of the object component (constant).

• The <input_file_ref> element specifies the source file where the object component originated
(reference).

Example B-3. Object Component List for the fl-4 Input File

<object_component id="oc-20">
<name>.text</name>
<load_address>0xac00</load_address>
<run_address>0xac00</run_address>
<size>0xc0</size>
<input_file_ref idref="fl-4"/>

</object_component>
<object_component id="oc-21">

<name>.data</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>
<input_file_ref idref="fl-4"/>

</object_component>
<object_component id="oc-22">

<name>.bss</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>
<input_file_ref idref="fl-4"/>

</object_component>

320 XML Link Information File Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Document Elements

B.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section listing in a
linker-generated map file. However, the XML link information file contains a specification of GROUP and
UNION output sections, which are not represented in a map file. There are three kinds of list items that
can occur in a <logical_group_list>:

• The <logical_group> is the specification of a section or GROUP that contains a list of object
components or logical group members. Each <logical_group> element is given an id so that it may be
referenced from other elements. Each <logical_group> is a container element enclosing the following
elements:

– The <name> element names the logical group (string).

– The <load_address> element specifies the load-time address of the logical group (constant).

– The <run_address> element specifies the run-time address of the logical group (constant).

– The <size> element specifies the size of the logical group (constant).

– The <contents> element lists elements contained in this logical group (container). These elements
refer to each of the member objects contained in this logical group:

• The <object_component_ref> is an object component that is contained in this logical group
(reference).

• The <logical_group_ref> is a logical group that is contained in this logical group (reference).

• The <overlay> is a special kind of logical group that represents a UNION, or a set of objects that
share the same memory space (container). Each <overlay> element is given an id so that it may be
referenced from other elements (like from an <allocated_space> element in the placement map). Each
<overlay> contains the following elements:

– The <name> element names the overlay (string).

– The <run_address> element specifies the run-time address of overlay (constant).

– The <size> element specifies the size of logical group (constant).

– The <contents> container element lists elements contained in this overlay. These elements refer to
each of the member objects contained in this logical group:

• The <object_component_ref> is an object component that is contained in this logical group
(reference).

• The <logical_group_ref> is a logical group that is contained in this logical group (reference).

• The <split_section> is another special kind of logical group that represents a collection of logical
groups that is split among multiple memory areas. Each <split_section> element is given an id so that
it may be referenced from other elements. The id consists of the following elements.

– The <name> element names the split section (string).

– The <contents> container element lists elements contained in this split section. The
<logical_group_ref> elements refer to each of the member objects contained in this split section,
and each element referenced is a logical group that is contained in this split section (reference).

321SPRU186V–July 2011 XML Link Information File Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Document Elements www.ti.com

Example B-4. Logical Group List for the fl-4 Input File

<logical_group_list>
...

<logical_group id="lg-7">
<name>.text</name>
<load_address>0x20</load_address>
<run_address>0x20</run_address>
<size>0xb240</size>
<contents>

<object_component_ref idref="oc-34"/>
<object_component_ref idref="oc-108"/>
<object_component_ref idref="oc-e2"/>

...
</contents>

</logical_group>
...
<overlay id="lg-b">

<name>UNION_1</name>
<run_address>0xb600</run_address>
<size>0xc0</size>
<contents>

<object_component_ref idref="oc-45"/>
<logical_group_ref idref="lg-8"/>

</contents>
</overlay>
...
<split_section id="lg-12">

<name>.task_scn</name>
<size>0x120</size>
<contents>

<logical_group_ref idref="lg-10"/>
<logical_group_ref idref="lg-11"/>

</contents>
...

</logical_group_list>

322 XML Link Information File Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Document Elements

B.2.5 Placement Map

The <placement_map> element describes the memory placement details of all named memory areas in
the application, including unused spaces between logical groups that have been placed in a particular
memory area.

The <memory_area> is a description of the placement details within a named memory area (container).
The description consists of these items:

• The <name> names the memory area (string).

• The <page_id> gives the id of the memory page in which this memory area is defined (constant).

• The <origin> specifies the beginning address of the memory area (constant).

• The <length> specifies the length of the memory area (constant).

• The <used_space> specifies the amount of allocated space in this area (constant).

• The <unused_space> specifies the amount of available space in this area (constant).

• The <attributes> lists the RWXI attributes that are associated with this area, if any (string).

• The <fill_value> specifies the fill value that is to be placed in unused space, if the fill directive is
specified with the memory area (constant).

• The <usage_details> lists details of each allocated or available fragment in this memory area. If the
fragment is allocated to a logical group, then a <logical_group_ref> element is provided to facilitate
access to the details of that logical group. All fragment specifications include <start_address> and
<size> elements.

– The <allocated_space> element provides details of an allocated fragment within this memory area
(container):

• The <start_address> specifies the address of the fragment (constant).

• The <size> specifies the size of the fragment (constant).

• The <logical_group_ref> provides a reference to the logical group that is allocated to this
fragment (reference).

– The <available_space element provides details of an available fragment within this memory area
(container):

• The <start_address> specifies the address of the fragment (constant).

• The <size> specifies the size of the fragment (constant).

Example B-5. Placement Map for the fl-4 Input File

<placement_map>
<memory_area>

<name>PMEM</name>
<page_id>0x0</page_id>
<origin>0x20</origin>
<length>0x100000</length>
<used_space>0xb240</used_space>
<unused_space>0xf4dc0</unused_space>
<attributes>RWXI</attributes>
<usage_details>

<allocated_space>
<start_address>0x20</start_address>
<size>0xb240</size>
<logical_group_ref idref="lg-7"/>

</allocated_space>
<available_space>

<start_address>0xb260</start_address>
<size>0xf4dc0</size>

</available_space>
</usage_details>

</memory_area>
...

</placement_map>

323SPRU186V–July 2011 XML Link Information File Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Document Elements www.ti.com

B.2.6 Far Call Trampoline List

The <far_call_trampoline_list> is a list of <far_call_trampoline> elements. The linker supports the
generation of far call trampolines to help a call site reach a destination that is out of range. A far call
trampoline function is guaranteed to reach the called function (callee) as it may utilize an indirect call to
the called function.

The <far_call_trampoline_list> enumerates all of the far call trampolines that are generated by the linker
for a particular link. The <far_call_trampoline_list> can contain any number of <far_call_trampoline>
elements. Each <far_call_trampoline> is a container enclosing the following elements:

• The <callee_name> element names the destination function (string).

• The <callee_address> is the address of the called function (constant).

• The <trampoline_object_component_ref> is a reference to an object component that contains the
definition of the trampoline function (reference).

• The <trampoline_address> is the address of the trampoline function (constant).

• The <caller_list> enumerates all call sites that utilize this trampoline to reach the called function
(container).

• The <trampoline_call_site> provides the details of a trampoline call site (container) and consists of
these items:

– The <caller_address> specifies the call site address (constant).

– The <caller_object_component_ref> is the object component where the call site resides
(reference).

Example B-6. Fall Call Trampoline List for the fl-4 Input File

<far_call_trampoline_list>
...

<far_call_trampoline>
<callee_name>_foo</callee_name>
<callee_address>0x08000030</callee_address>
<trampoline_object_component_ref idref="oc-123"/>
<trampoline_address>0x2020</trampoline_address>
<caller_list>

<call_site>
<caller_address>0x1800</caller_address>
<caller_object_component_ref idref="oc-23"/>

</call_site>
<call_site>

<caller_address>0x1810</caller_address>
<caller_object_component_ref idref="oc-23"/>

</call_site>
</caller_list>

</far_call_trampoline>
...
</far_call_trampoline_list>

324 XML Link Information File Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Document Elements

B.2.7 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The list
provides information about a symbol's name and value. In the future, the symbol_table list may provide
type information, the object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a symbol with these elements:

• The <name> element specifies the symbol name (string).

• The <value> element specifies the symbol value (constant).

Example B-7. Symbol Table for the fl-4 Input File

<symbol_table>
<symbol>

<name>_c_int00</name>
<value>0xaf80</value>

</symbol>
<symbol>

<name>_main</name>
<value>0xb1e0</value>

</symbol>
<symbol>

<name>_printf</name>
<value>0xac00</value>

</symbol>
...

</symbol_table>

325SPRU186V–July 2011 XML Link Information File Description
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

326 XML Link Information File Description SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Appendix C
SPRU186V–July 2011

Glossary

ABI— Application binary interface.

absolute address— An address that is permanently assigned to a TMS320C6000 memory location.

absolute lister— A debugging tool that allows you to create assembler listings that contain absolute
addresses.

alignment— A process in which the linker places an output section at an address that falls on an n-byte
boundary, where n is a power of 2. You can specify alignment with the SECTIONS linker directive.

allocation— A process in which the linker calculates the final memory addresses of output sections.

ANSI— American National Standards Institute; an organization that establishes standards voluntarily
followed by industries.

archive library— A collection of individual files grouped into a single file by the archiver.

archiver— A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive library.

ASCII— American Standard Code for Information Interchange; a standard computer code for
representing and exchanging alphanumeric information.

assembler— A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The assembler
substitutes absolute operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant— A symbol that is assigned a constant value with the .set directive.

big endian— An addressing protocol in which bytes are numbered from left to right within a word. More
significant bytes in a word have lower numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also little endian

binding— A process in which you specify a distinct address for an output section or a symbol.

block— A set of statements that are grouped together within braces and treated as an entity.

.bss section— One of the default object file sections. You use the assembler .bss directive to reserve a
specified amount of space in the memory map that you can use later for storing data. The .bss
section is uninitialized.

byte— Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler— A software program that translates C source statements into assembly language
source statements.

COFF— Common object file format; a system of object files configured according to a standard
developed by AT&T. These files are relocatable in memory space.

command file— A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

327SPRU186V–July 2011 Glossary
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Appendix C www.ti.com

comment— A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they have no effect
on the object file.

compiler program— A utility that lets you compile, assemble, and optionally link in one step. The
compiler runs one or more source modules through the compiler (including the parser, optimizer,
and code generator), the assembler, and the linker.

conditional processing— A method of processing one block of source code or an alternate block of
source code, according to the evaluation of a specified expression.

configured memory— Memory that the linker has specified for allocation.

constant— A type whose value cannot change.

cross-reference lister— A utility that produces an output file that lists the symbols that were defined,
what file they were defined in, what reference type they are, what line they were defined on, which
lines referenced them, and their assembler and linker final values. The cross-reference lister uses
linked object files as input.

cross-reference listing— An output file created by the assembler that lists the symbols that were
defined, what line they were defined on, which lines referenced them, and their final values.

.data section— One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data section.

directives— Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

ELF— Executable and linking format; a system of object files configured according to the System V
Application Binary Interface specification.

emulator— A hardware development system that duplicates the TMS320C6000 operation.

entry point— A point in target memory where execution starts.

environment variable— A system symbol that you define and assign to a string. Environmental variables
are often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog— The portion of code in a function that restores the stack and returns. See also pipelined-loop
epilog.

executable module— A linked object file that can be executed in a target system.

expression— A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol— A symbol that is used in the current program module but defined or declared in a
different program module.

field— For the TMS320C6000, a software-configurable data type whose length can be programmed to
be any value in the range of 1-32 bits.

global symbol— A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

GROUP— An option of the SECTIONS directive that forces specified output sections to be allocated
contiguously (as a group).

hex conversion utility— A utility that converts object files into one of several standard ASCII
hexadecimal formats, suitable for loading into an EPROM programmer.

high-level language debugging— The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

328 Glossary SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Appendix C

hole— An area between the input sections that compose an output section that contains no code.

incremental linking— Linking files in several passes. Incremental linking is useful for large applications,
because you can partition the application, link the parts separately, and then link all of the parts
together.

initialization at load time— An autoinitialization method used by the linker when linking C/C++ code. The
linker uses this method when you invoke it with the --ram_model link option. This method initializes
variables at load time instead of run time.

initialized section— A section from an object file that will be linked into an executable module.

input section— A section from an object file that will be linked into an executable module.

ISO— International Organization for Standardization; a worldwide federation of national standards
bodies, which establishes international standards voluntarily followed by industries.

label— A symbol that begins in column 1 of an assembler source statement and corresponds to the
address of that statement. A label is the only assembler statement that can begin in column 1.

linker— A software program that combines object files to form an object module that can be allocated
into system memory and executed by the device.

listing file— An output file, created by the assembler, that lists source statements, their line numbers,
and their effects on the section program counter (SPC).

little endian— An addressing protocol in which bytes are numbered from right to left within a word. More
significant bytes in a word have higher numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also big endian

loader— A device that places an executable module into system memory.

macro— A user-defined routine that can be used as an instruction.

macro call— The process of invoking a macro.

macro definition— A block of source statements that define the name and the code that make up a
macro.

macro expansion— The process of inserting source statements into your code in place of a macro call.

macro library— An archive library composed of macros. Each file in the library must contain one macro;
its name must be the same as the macro name it defines, and it must have an extension of .asm.

map file— An output file, created by the linker, that shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the symbols were
defined for your program.

member— The elements or variables of a structure, union, archive, or enumeration.

memory map— A map of target system memory space that is partitioned into functional blocks.

mnemonic— An instruction name that the assembler translates into machine code.

model statement— Instructions or assembler directives in a macro definition that are assembled each
time a macro is invoked.

named section— An initialized section that is defined with a .sect directive.

object file— An assembled or linked file that contains machine-language object code.

object library— An archive library made up of individual object files.

object module— A linked, executable object file that can be downloaded and executed on a target
system.

329SPRU186V–July 2011 Glossary
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

Appendix C www.ti.com

operand— An argument of an assembly language instruction, assembler directive, or macro directive
that supplies information to the operation performed by the instruction or directive.

optimizer— A software tool that improves the execution speed and reduces the size of C programs. See
also assembly optimizer.

options— Command-line parameters that allow you to request additional or specific functions when you
invoke a software tool.

output module— A linked, executable object file that is downloaded and executed on a target system.

output section— A final, allocated section in a linked, executable module.

partial linking— Linking files in several passes. Incremental linking is useful for large applications
because you can partition the application, link the parts separately, and then link all of the parts
together.

quiet run— An option that suppresses the normal banner and the progress information.

raw data— Executable code or initialized data in an output section.

relocation— A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

ROM width— The width (in bits) of each output file, or, more specifically, the width of a single data value
in the hex conversion utility file. The ROM width determines how the utility partitions the data into
output files. After the target words are mapped to memory words, the memory words are broken
into one or more output files. The number of output files is determined by the ROM width.

run address— The address where a section runs.

run-time-support library— A library file, rts.src, that contains the source for the run time-support
functions.

section— A relocatable block of code or data that ultimately will be contiguous with other sections in the
memory map.

section program counter (SPC)— An element that keeps track of the current location within a section;
each section has its own SPC.

sign extend— A process that fills the unused MSBs of a value with the value's sign bit.

simulator— A software development system that simulates TMS320C6000 operation.

source file— A file that contains C/C++ code or assembly language code that is compiled or assembled
to form an object file.

static variable— A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is resumed
when the function or program is reentered.

storage class— An entry in the symbol table that indicates how to access a symbol.

string table— A table that stores symbol names that are longer than eight characters (symbol names of
eight characters or longer cannot be stored in the symbol table; instead they are stored in the string
table). The name portion of the symbol's entry points to the location of the string in the string table.

structure— A collection of one or more variables grouped together under a single name.

subsection— A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections give you tighter
control of the memory map.

symbol— A string of alphanumeric characters that represents an address or a value.

330 Glossary SPRU186V–July 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

www.ti.com Appendix C

symbolic debugging— The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as a simulator or an emulator.

tag— An optional type name that can be assigned to a structure, union, or enumeration.

target memory— Physical memory in a system into which executable object code is loaded.

.text section— One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

unconfigured memory— Memory that is not defined as part of the memory map and cannot be loaded
with code or data.

uninitialized section— A object file section that reserves space in the memory map but that has no
actual contents. These sections are built with the .bss and .usect directives.

UNION— An option of the SECTIONS directive that causes the linker to allocate the same address to
multiple sections.

union— A variable that can hold objects of different types and sizes.

unsigned value— A value that is treated as a nonnegative number, regardless of its actual sign.

variable— A symbol representing a quantity that can assume any of a set of values.

veneer— A sequence of instructions that serves as an alternate entry point into a routine if a state
change is required.

well-defined expression— A term or group of terms that contains only symbols or assembly-time
constants that have been defined before they appear in the expression.

word— A 32-bit addressable location in target memory

331SPRU186V–July 2011 Glossary
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU186V

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and www.ti.com/automotive
Automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions www.ti.com/lprf

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/wireless-apps
http://www.ti.com/lprf
http://e2e.ti.com

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Tools Descriptions

	2 Introduction to Object Modules
	2.1 Sections
	2.2 How the Assembler Handles Sections
	2.2.1 Uninitialized Sections
	2.2.2 Initialized Sections
	2.2.3 Named Sections
	2.2.4 Subsections
	2.2.5 Section Program Counters
	2.2.6 Using Sections Directives

	2.3 How the Linker Handles Sections
	2.3.1 Default Memory Allocation
	2.3.2 Placing Sections in the Memory Map

	2.4 Relocation
	
	2.4.0.1 Expressions With Multiple Relocatable Symbols (COFF Only)
	2.4.0.2 Dynamic Relocation Entries (ELF Only)

	2.5 Run-Time Relocation
	2.6 Loading a Program
	2.7 Symbols in an Object File
	2.7.1 External Symbols

	2.8 Object File Format Specifications

	3 Assembler Description
	3.1 Assembler Overview
	3.2 The Assembler's Role in the Software Development Flow
	3.3 Invoking the Assembler
	3.4 Controlling Application Binary Interface
	3.5 Naming Alternate Directories for Assembler Input
	3.5.1 Using the --include_path Assembler Option
	3.5.2 Using the C6X_A_DIR Environment Variable

	3.6 Source Statement Format
	3.6.1 Label Field
	3.6.2 Mnemonic Field
	3.6.3 Unit Specifier Field
	3.6.4 Operand Field
	3.6.5 Comment Field

	3.7 Constants
	3.7.1 Binary Integers
	3.7.2 Octal Integers
	3.7.3 Decimal Integers
	3.7.4 Hexadecimal Integers
	3.7.5 Character Constants
	3.7.6 Assembly-Time Constants

	3.8 Character Strings
	3.9 Symbols
	3.9.1 Labels
	3.9.2 Local Labels
	3.9.3 Symbolic Constants
	3.9.4 Defining Symbolic Constants (--asm_define Option)
	3.9.5 Predefined Symbolic Constants
	3.9.6 Register Pairs
	3.9.7 Register Quads (C6600 Only)
	3.9.8 Substitution Symbols

	3.10 Expressions
	3.10.1 Operators
	3.10.2 Expression Overflow and Underflow
	3.10.3 Well-Defined Expressions
	3.10.4 Conditional Expressions
	3.10.5 Legal Expressions
	3.10.6 Expression Examples

	3.11 Built-in Functions and Operators
	3.11.1 Built-In Math and Trigonometric Functions
	3.11.2 C6x Built-In Operators
	3.11.2.1 $DPR_BYTE(sym) / $DPR_HWORD(sym) / $DPR_WORD(sym)
	3.11.2.2 $GOT(sym) / $DPR_GOT(sym)
	3.11.2.3 $PCR_OFFSET(x,y)
	3.11.2.4 $LABEL_DIFF(x,y) Operator

	3.12 Source Listings
	3.13 Debugging Assembly Source
	3.14 Cross-Reference Listings

	4 Assembler Directives
	4.1 Directives Summary
	4.2 Directives That Define Sections
	4.3 Directives That Initialize Constants
	4.4 Directives That Perform Alignment and Reserve Space
	4.5 Directives That Format the Output Listings
	4.6 Directives That Reference Other Files
	4.7 Directives That Enable Conditional Assembly
	4.8 Directives That Define Union or Structure Types
	4.9 Directives That Define Enumerated Types
	4.10 Directives That Define Symbols at Assembly Time
	4.11 Miscellaneous Directives
	4.12 Directives Reference

	5 Macro Description
	5.1 Using Macros
	5.2 Defining Macros
	5.3 Macro Parameters/Substitution Symbols
	5.3.1 Directives That Define Substitution Symbols
	5.3.2 Built-In Substitution Symbol Functions
	5.3.3 Recursive Substitution Symbols
	5.3.4 Forced Substitution
	5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
	5.3.6 Substitution Symbols as Local Variables in Macros

	5.4 Macro Libraries
	5.5 Using Conditional Assembly in Macros
	5.6 Using Labels in Macros
	5.7 Producing Messages in Macros
	5.8 Using Directives to Format the Output Listing
	5.9 Using Recursive and Nested Macros
	5.10 Macro Directives Summary

	6 Archiver Description
	6.1 Archiver Overview
	6.2 The Archiver's Role in the Software Development Flow
	6.3 Invoking the Archiver
	6.4 Archiver Examples
	6.5 Library Information Archiver Description
	6.5.1 Invoking the Library Information Archiver
	6.5.2 Library Information Archiver Example
	6.5.3 Listing the Contents of an Index Library
	6.5.4 Requirements

	7 Linker Description
	7.1 Linker Overview
	7.2 The Linker's Role in the Software Development Flow
	7.3 Invoking the Linker
	7.4 Linker Options
	7.4.1 Wild Cards in File, Section, and Symbol Patterns
	7.4.2 Relocation Capabilities (--absolute_exe and --relocatable Options)
	7.4.2.1 Producing an Absolute Output Module (--absolute_exe option)
	7.4.2.2 Producing a Relocatable Output Module (--relocatable option)
	7.4.2.3 Producing an Executable, Relocatable Output Module (-ar Option)

	7.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
	7.4.4 Compression (--cinit_compression and --copy_compression Option)
	7.4.5 Control Linker Diagnostics
	7.4.6 Disable Automatic Library Selection (--disable_auto_rts Option)
	7.4.7 Controlling Unreferenced and Unused Sections
	7.4.7.1 Disable Conditional Linking (--disable_clink Option)
	7.4.7.2 Do Not Remove Unused Sections (--unused_section_elimination Option)

	7.4.8 Link Command File Preprocessing (--disable_pp, --define and --undefine Options)
	7.4.9 Define an Entry Point (--entry_point Option)
	7.4.10 Set Default Fill Value (--fill_value Option)
	7.4.11 Define Heap Size (--heap_size Option)
	7.4.12 Hiding Symbols
	7.4.13 Alter the Library Search Algorithm (--library Option, --search_path Option, and C6X_C_DIR Environment Variable)
	7.4.13.1 Name an Alternate Library Directory (--search_path Option)
	7.4.13.2 Name an Alternate Library Directory (C6X_C_DIR Environment Variable)
	7.4.13.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

	7.4.14 Change Symbol Localization
	7.4.14.1 Make All Global Symbols Static (--make_static Option)
	7.4.14.2 Make a Symbol Global (--make_global Option)

	7.4.15 Create a Map File (--map_file Option)
	7.4.16 Managing Map File Contents (--mapfile_contents Option)
	7.4.17 Disable Name Demangling (--no_demangle)
	7.4.18 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)
	7.4.19 Strip Symbolic Information (--no_sym_table Option)
	7.4.20 Name an Output Module (--output_file Option)
	7.4.21 Prioritizing Function Placement (--preferred_order Option)
	7.4.22 C Language Options (--ram_model and --rom_model Options)
	7.4.23 Retain Discarded Sections (--retain Option)
	7.4.24 Create an Absolute Listing File (--run_abs Option)
	7.4.25 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)
	7.4.26 Define Stack Size (--stack_size Option)
	7.4.27 Enforce Strict Compatibility (--strict_compatibility Option)
	7.4.28 Mapping of Symbols (--symbol_map Option)
	7.4.29 Generate Far Call Trampolines (--trampolines Option)
	7.4.29.1 Carrying Trampolines From Load Space to Run Space
	7.4.29.2 Disadvantages of Using Trampolines
	7.4.29.3 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)
	7.4.29.4 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)

	7.4.30 Introduce an Unresolved Symbol (--undef_sym Option)
	7.4.31 Display a Message When an Undefined Output Section Is Created (--warn_sections Option)
	7.4.32 Generate XML Link Information File (--xml_link_info Option)
	7.4.33 Zero Initialization (--zero_init Option)

	7.5 Linker Command Files
	7.5.1 Reserved Names in Linker Command Files
	7.5.2 Constants in Linker Command Files
	7.5.3 The MEMORY Directive
	7.5.3.1 Default Memory Model
	7.5.3.2 MEMORY Directive Syntax
	7.5.3.3 Expressions and Address Operators

	7.5.4 The SECTIONS Directive
	7.5.4.1 SECTIONS Directive Syntax
	7.5.4.2 Allocation
	7.5.4.2.1 Binding
	7.5.4.2.2 Named Memory
	7.5.4.2.3 Controlling Allocation Using The HIGH Location Specifier
	7.5.4.2.4 Alignment and Blocking
	7.5.4.2.5 Alignment With Padding

	7.5.4.3 Specifying Input Sections
	7.5.4.4 Using Multi-Level Subsections
	7.5.4.5 Specifying Library or Archive Members as Input to Output Sections
	7.5.4.6 Allocation Using Multiple Memory Ranges
	7.5.4.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

	7.5.5 Specifying a Section's Run-Time Address
	7.5.5.1 Specifying Load and Run Addresses
	7.5.5.2 Uninitialized Sections
	7.5.5.3 Referring to the Load Address by Using the .label Directive

	7.5.6 Using UNION and GROUP Statements
	7.5.6.1 Overlaying Sections With the UNION Statement
	7.5.6.2 Grouping Output Sections Together
	7.5.6.3 Nesting UNIONs and GROUPs
	7.5.6.4 Checking the Consistency of Allocators
	7.5.6.5 Naming UNIONs and GROUPs

	7.5.7 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)
	7.5.8 Assigning Symbols at Link Time
	7.5.8.1 Syntax of Assignment Statements
	7.5.8.2 Assigning the SPC to a Symbol
	7.5.8.3 Assignment Expressions
	7.5.8.4 Symbols Defined by the Linker
	7.5.8.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol
	7.5.8.6 Why the Dot Operator Does Not Always Work
	7.5.8.7 Address and Dimension Operators
	7.5.8.7.1 Input Items
	7.5.8.7.2 Output Section
	7.5.8.7.3 GROUPs
	7.5.8.7.4 UNIONs

	7.5.9 Creating and Filling Holes
	7.5.9.1 Initialized and Uninitialized Sections
	7.5.9.2 Creating Holes
	7.5.9.3 Filling Holes
	7.5.9.4 Explicit Initialization of Uninitialized Sections

	7.6 Object Libraries
	7.7 Default Allocation Algorithm
	7.7.1 How the Allocation Algorithm Creates Output Sections
	7.7.2 Reducing Memory Fragmentation

	7.8 Linker-Generated Copy Tables
	7.8.1 A Current Boot-Loaded Application Development Process
	7.8.2 An Alternative Approach
	7.8.3 Overlay Management Example
	7.8.4 Generating Copy Tables Automatically With the Linker
	7.8.5 The table() Operator
	7.8.6 Boot-Time Copy Tables
	7.8.7 Using the table() Operator to Manage Object Components
	7.8.8 Compression Support
	7.8.8.1 Compressed Copy Table Format
	7.8.8.2 Compressed Section Representation in the Object File
	7.8.8.3 Compressed Data Layout
	7.8.8.4 Run-Time Decompression
	7.8.8.5 Compression Algorithms

	7.8.9 Copy Table Contents
	7.8.10 General Purpose Copy Routine
	7.8.11 Linker-Generated Copy Table Sections and Symbols
	7.8.12 Splitting Object Components and Overlay Management

	7.9 Partial (Incremental) Linking
	7.10 Linking C/C++ Code
	7.10.1 Run-Time Initialization
	7.10.2 Object Libraries and Run-Time Support
	7.10.3 Setting the Size of the Stack and Heap Sections
	7.10.4 Autoinitialization of Variables at Run Time
	7.10.5 Initialization of Variables at Load Time
	7.10.6 The --rom_model and --ram_model Linker Options

	7.11 Linker Example
	7.12 Dynamic Linking with the C6000 Code Generation Tools
	7.12.1 Static vs Dynamic Linking
	7.12.1.1 Code Size Reduction
	7.12.1.2 Binding Time
	7.12.1.3 Modular Development
	7.12.1.4 Recommended Reading

	7.12.2 Embedded Application Binary Interface (EABI) Required
	7.12.3 Bare-Metal Dynamic Linking Model
	7.12.3.1 Consider a Static DSP Application
	7.12.3.2 Make it Dynamic
	7.12.3.3 Symbol Resolution

	7.12.4 Building a Dynamic Executable
	7.12.4.1 Exporting Symbols

	7.12.5 Building a Dynamic Library
	7.12.5.1 Importing/Exporting Symbols
	7.12.5.2 A Simple Example - hello.dll
	7.12.5.3 Summary of Compiler and Linker Options

	7.12.6 Symbol Import/Export
	7.12.6.1 ELF Symbols
	7.12.6.1.1 Symbol Binding Attribute Values
	7.12.6.1.2 ELF Symbol Visibility

	7.12.6.2 Controlling Import/Export of Symbols
	7.12.6.2.1 Source Code Annotations (Recommended)
	7.12.6.2.2 Import/Export Using ELF Linkage Macros (elf_linkage.h)
	7.12.6.2.3 Import/Export Using Compiler Options
	7.12.6.2.4 Import/Export Using Linker Options

	8 Absolute Lister Description
	8.1 Producing an Absolute Listing
	8.2 Invoking the Absolute Lister
	8.3 Absolute Lister Example

	9 Cross-Reference Lister Description
	9.1 Producing a Cross-Reference Listing
	9.2 Invoking the Cross-Reference Lister
	9.3 Cross-Reference Listing Example

	10 Object File Utilities
	10.1 Invoking the Object File Display Utility
	10.2 Invoking the Disassembler
	10.3 Invoking the Name Utility
	10.4 Invoking the Strip Utility

	11 Hex Conversion Utility Description
	11.1 The Hex Conversion Utility's Role in the Software Development Flow
	11.2 Invoking the Hex Conversion Utility
	11.2.1 Invoking the Hex Conversion Utility From the Command Line
	11.2.2 Invoking the Hex Conversion Utility With a Command File

	11.3 Understanding Memory Widths
	11.3.1 Target Width
	11.3.2 Specifying the Memory Width
	11.3.3 Partitioning Data Into Output Files
	11.3.4 Specifying Word Order for Output Words

	11.4 The ROMS Directive
	11.4.1 When to Use the ROMS Directive
	11.4.2 An Example of the ROMS Directive

	11.5 The SECTIONS Directive
	11.6 The Load Image Format (--load_image Option)
	11.6.1 Load Image Section Formation
	11.6.2 Load Image Characteristics

	11.7 Excluding a Specified Section
	11.8 Assigning Output Filenames
	11.9 Image Mode and the --fill Option
	11.9.1 Generating a Memory Image
	11.9.2 Specifying a Fill Value
	11.9.3 Steps to Follow in Using Image Mode

	11.10 Building a Table for an On-Chip Boot Loader
	11.10.1 Description of the Boot Table
	11.10.2 The Boot Table Format
	11.10.3 How to Build the Boot Table
	11.10.3.1 Building the Boot Table
	11.10.3.2 Leaving Room for the Boot Table
	11.10.3.3 Setting the Entry Point for the Boot Table

	11.10.4 Using the C6000 Boot Loader

	11.11 Controlling the ROM Device Address
	11.12 Control Hex Conversion Utility Diagnostics
	11.13 Description of the Object Formats
	11.13.1 ASCII-Hex Object Format (--ascii Option)
	11.13.2 Intel MCS-86 Object Format (--intel Option)
	11.13.3 Motorola Exorciser Object Format (--motorola Option)
	11.13.4 Extended Tektronix Object Format (--tektronix Option)
	11.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)
	11.13.6 TI-TXT Hex Format (--ti_txt Option)

	12 Sharing C/C++ Header Files With Assembly Source
	12.1 Overview of the .cdecls Directive
	12.2 Notes on C/C++ Conversions
	12.2.1 Comments
	12.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)
	12.2.3 Pragmas
	12.2.4 The #error and #warning Directives
	12.2.5 Predefined symbol _ _ASM_HEADER_ _
	12.2.6 Usage Within C/C++ asm() Statements
	12.2.7 The #include Directive
	12.2.8 Conversion of #define Macros
	12.2.9 The #undef Directive
	12.2.10 Enumerations
	12.2.11 C Strings
	12.2.12 C/C++ Built-In Functions
	12.2.13 Structures and Unions
	12.2.14 Function/Variable Prototypes
	12.2.15 C Constant Suffixes
	12.2.16 Basic C/C++ Types

	12.3 Notes on C++ Specific Conversions
	12.3.1 Name Mangling
	12.3.2 Derived Classes
	12.3.3 Templates
	12.3.4 Virtual Functions

	12.4 Special Assembler Support
	12.4.1 Enumerations (.enum/.emember/.endenum)
	12.4.2 The .define Directive
	12.4.3 The .undefine/.unasg Directives
	12.4.4 The $defined() Built-In Function
	12.4.5 The $sizeof Built-In Function
	12.4.6 Structure/Union Alignment & $alignof()
	12.4.7 The .cstring Directive

	A Symbolic Debugging Directives
	A.1 DWARF Debugging Format
	A.2 COFF Debugging Format
	A.3 Debug Directive Syntax

	B XML Link Information File Description
	B.1 XML Information File Element Types
	B.2 Document Elements
	B.2.1 Header Elements
	B.2.2 Input File List
	B.2.3 Object Component List
	B.2.4 Logical Group List
	B.2.5 Placement Map
	B.2.6 Far Call Trampoline List
	B.2.7 Symbol Table

	C Glossary

